Dustin and Rocky, MSA Class of 2017Students come to the Institute with a wide variety of academic backgrounds, but it’s essential to have a solid grasp of the underlying math and statistics before entry.Before matriculating, applicants must have completed a bachelor’s degree from an accredited college or university and have a proven track record of strong academic performance. It is not uncommon for applicants to already hold advanced degrees (MS, MBA, and PhD). We accept applicants from a wide variety of academic majors. However, students will need to have successfully completed prerequisite courses before enrolling. Prerequisites do not have to be completed before applying for admission.

Prerequisite Courses

Prerequisite courses for applicants include at least one, but ideally two semesters of college-level statistical methods, including substantive coursework covering regression analysis.

An additional requirement is the ability to code in one or more languages, particularly as it relates to data science and analytics. Your ability could have been gained in formal coursework or through substantive experience coding. There are numerous online resources for enhancing coding skill, many of them free or at low cost.

We recognize prerequisite courses completed for credit and a grade from other accredited institutions; the course descriptions listed above should be used to guide your choice of courses from other institutions. ST 513/514 may be completed at NC State as a Non-Degree Studies (NDS) student.Further information and instructions on how to apply can be found on the NDS webpage. Registration for post-baccalaureate students opens about three weeks prior to the start of classes. Historically, the upper-level prerequisite courses fill quickly and entrance to the courses is not guaranteed.


For students currently enrolled at NC State: Online Fall Spring
ST 305 – Statistical Methods
ST 430 – Regression Analysis
ST 371 – Probability and Distribution Theory
ST 372 – Statistical Inference and Regression
For all other post-baccalaureate applicants: Online Fall Spring
ST 513 – Statistics for Management I
ST 514 – Statistics For Management II

Typical Subjects Covered in Prerequisite Courses

The topics provided below can be used for comparison with courses taken at other institutions.

  • Statistics for Management I:
    • Data Collection / Sampling
    • Probability
    • Normal & Binomial Distributions
    • Sampling Distributions / Central Limit Theorem
    • Confidence Intervals
    • Hypothesis Testing
    • Analysis of Variance (ANOVA)
    • Correlation
    • Simple Linear Regression
    • Matrix Manipulation
    • Solving Systems of Linear Equations
    • Gauss-Jordan Elimination
  • Statistics For Management II:
    • Multiple Linear Regression
    • Variable Selection
    • Multicollinearity
    • Residual Diagnostics
    • Matrix Manipulation
    • Least Squares Estimation / Normal Equation
    • Variable Reduction through Eigenvalues
    • Eigenvalues / Eigenvectors

Please send questions about prerequisites to MSA Admissions.