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ABSTRACT 
 
Due to limitations of chemical analysis procedures, small 
concentrations cannot be precisely measured.  These 
concentrations are said to be below the limit of detection (LOD).  
In statistical analyses, these values are often censored and 
substituted with a constant value, such as half the LOD, the LOD 
divided by the square root of 2, or zero.  These methods for 
handling below-detection values results in two distributions, a 
uniform distribution for those values below the LOD, and the true 
distribution.  As a result, this can produce questionable 
descriptive statistics depending upon the percentage of values 
below the LOD.  An alternative method uses the characteristics of 
the distribution of the values above the LOD to estimate the 
values below the LOD.  This can be done with an extrapolation 
technique or maximum likelihood estimation. An example program 
using the same data is presented calculating the mean, standard 
deviation, t-test, and relative difference in the means for various 
methods and compares the results.  The extrapolation and 
maximum likelihood estimate techniques have smaller error rates 
than all the standard replacement techniques.  Although more 
computational, these methods produce more reliable descriptive 
statistics. 

INTRODUCTION  
 
A common problem faced by researchers analyzing data in the 
environmental and occupational health fields is how to 
appropriately handle observations reported to have nondetectable 
levels of a contaminant (Hornung and Reed, 1990).  Even with 
technical advances in the areas of field sampling, sample 
processing protocols, and laboratory instrumentation, the desire 
to identify and measure contaminants down to extraordinarily low 
levels means that there will always be a threshold below which a 
value cannot be accurately quantified (Lambert et al., 1991).  As a 
value approaches zero there is a point where any signal due to 
the contaminant cannot be differentiated from the background 
noise, i.e. the precision of the instrument/method is not sufficient 
to discern the presence of the compound and quantify it to an 
acceptable level of accuracy.  While one can differentiate 
between an “instrument limit of detection” and “method limit of 
detection,” it is the method limit of detection that is relevant to this 
discussion. 
 
By strict definition, the limit of detection (LOD) is the level at which 
a measurement has a 95% probability of being different than zero 
(Taylor, 1987).  There is no universal procedure for determining a 
method LOD, but it is broadly defined as the concentration 
corresponding to the mean blank response (that is, the mean 
response produced by blank samples) plus three standard 
deviations of the blank response.  Various identification criteria 
(for example, retention time on a specific analytical column, 
proper ratio of ions measured by a mass spectrometer, etc.) must 
also be met to confirm the presence of the compound of interest.  
While it is almost always possible to calculate values below the 
method LOD, these values are not considered to be statistically 
different from zero, and are generally reported as “below detection 
limit” or “nondetect.”   
 
Although statistically different from zero, values near the LOD are 
generally less accurate and precise (that is, less reliable) than 
values that are much larger than the LOD.   The limit of 
quantitation (LOQ) is the term often used by laboratories to 
indicate the smallest amount that they consider to be reliably 
quantifiable.  There is often considerable confusion concerning  
 

 
 
the distinction between the two, but the LOQ is generally defined 
as some multiple of the LOD, usually three times the LOD. 
Estimates of concentrations above the LOD but below the LOQ 
are potentially problematic due to their higher relative uncertainty 
(compared to values above the LOQ); these values are rarely 
treated any differently from values above the LOQ. 
 
Unfortunately, it is not as easy to use below-LOD values in data 
analysis compared to below-LOQ values.  First, there is the 
standard laboratory practice of reporting “nondetect” instead of 
numbers for values below the LOD (often referred to as 
“censoring”).  Second, even if numbers were reported, they may 
be highly unreliable (though many researchers might prefer highly 
unreliable over nothing).  Thus, a researcher faced with data 
containing nondetects must decide how to appropriately use them 
in statistical analyses.  One might reason that since the actual 
values of these observations are extraordinarily small, they are 
unimportant.  However, these observations can still have a large 
effect on the parameters of the distribution of the entire set of 
observations.  Treating them incorrectly may introduce severe 
bias when estimating the mean and variance of the distribution 
(Lyles et al., 2001), which may consequently distort regression 
coefficients and their standard errors and reduce power in 
hypothesis tests (Hughes, 2000).  Depending upon the severity of 
the censoring, the distributional statistics may be highly 
questionable.   
 
The problem of estimating the parameters of distributions with 
censored data has been extensively studied (Cohen, 1959; Gleit, 
1985; Helsel and Guilliom, 1986; Helsel, 1990; Hornung and 
Reed, 1990; Lambert, 1991; Özkaynak et al., 1991; Finkelstein 
and Verma, 2001).  The main approaches to handling left 
censored data are: 1) simple replacement, 2) extrapolation, and 3) 
maximum likelihood estimation.  The most common, and easiest, 
strategy is simple replacement, where censored values are 
replaced with zero, with some fraction of the detection limit 
(usually either 1/2 or 1//2), or with the detection limit itself.  
Extrapolation strategies use regression or probability plotting 
techniques to calculate the mean and standard deviation based 
on the regression line of the observed, above-LOD values and 
their rank scores.  A third strategy, maximum likelihood estimation 
(MLE), is also based on the statistical properties of the 
noncensored portion of the data, but uses an iterative process to 
solve for the means and variance.  Although the latter two 
methods do not generate replacement data for the censored 
observations, they can be modified to do so if needed.  
 
The SAS language allows for both the statistical analyses and 
data manipulations required to perform these techniques.  Using 
SAS procedures and options for the statistical computations will 
reduce the necessary coding that other languages would require.  
The flexibility in outputting the information generated by the 
procedures, allows for the additional manipulations to be easily 
made within a datastep.  The macro capability of SAS is pivotal 
for performing the testing and comparison of the different 
methods of handling censored data.  Macros make repetitive 
processing of procedures and datasteps possible and allow for 
inputting parameters.  The flexibility and robustness of the SAS 
language makes it a good choice for programming these types of 
data problems. 
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METHOD: 
To test the difference between the various techniques, 
distributions with known parameters are needed.  Therefore, 
normally distributed datasets were generated with known means 
and standard deviations using the RANNOR function in SAS with 
numbers of observations of either 500 or 1000.  The mean and 
standard deviation combinations were arbitrarily chosen to be 4 
and 1.5, 10 and 5, and 50 and 5. 
 
Cut-off points were calculated using the 5, 10, 25, 50 and 75 
percentiles for the distribution determined using a PROC MEANS 
statement.  The cut-off points will be used as a surrogate for limit 
of detection.  These datasets were used to test each of the 
methods of dealing with the censored values.   
 
To test the simple replacement techniques, a series of datasets 
were generated with the values below the cut-off points replaced 
using the standard replacement values of zero, cut-off value 
divided by two, or the cut-off value divided by the square root of 
two.  The means for the new datasets were compared to those of 
the parent dataset using a student t-test.   As was done in 
Newman et al. 1989, the significance level was set to 0.1.  The 
percentage of times that the p-value was less than 0.1 was 
calculated for each cut-off level, the replacement technique, and 
the combination of cut-off level and replacement technique. 
 
The method of extrapolation is a method of calculating the mean 
and standard deviation based on the regression line of the values 
and the inverse cumulative normal distribution for a function of the 
rank score of those values not censored.   To perform this 
method, first the values must be rank ordered including those that 
are censored.  Given there are n samples of which k are 
censored, for the n-k values that are not censored, calculate the 
Blom estimate of the normal score: 
 
 Ai = F-1((i-3/8)/ (n+1/4)), 
where  

F-1 is the inverse cumulative normal distribution function 
 i is the rank score for the value Xi 
 n is the size of the sample. 
 
In SAS this translates to  
 

proc rank data=one out=two normal=blom;  
 var X; 
 ranks A; 
run;   

 
Then regress the X values against A using a simple linear 
regression model: 
 
 Xi = a + b Ai + ei. 
 
In SAS use the following code: 
 

proc reg data=two outest=stat2; 
 model X = A; 
run; 

 
The mean of the noncensored distribution is estimated by 
intercept and the standard deviation is estimated by the slope of 
the line. 
 
 
 
 
The maximum likelihood estimator (MLE) of the mean and 
standard deviation are solved in an iterative process solving the 
following system of equations: 

 
 
 µ= m – σ (k/n-k) f(ε)/F(ε) 
 σ2= [S2 + (m-µ2)] / [1 + ε (k/n-k) f(ε)/F(ε)] 
where: 

ε= (LOD-µ)/ σ 
LOD= limit of detection 
f(k) = the distribution function for the normal distribution 
F(k) =the cumulative distribution function for the normal 

distribution, 
m= the mean of all values above the LOD 
S =The population standard deviation of all values 

above the LOD. 
 
In SAS this is done by using LIFEREG  
 

proc lifereg data=ttest1 outest=stat3;  
      model (lower, Y) = / d=normal;  
run; 
 
where: 
if X > cuts then lower = X; 
 else lower = .; 
Y = (X > cuts) * X + (X<=cuts)*cuts; 
 
(Y is X is X is greater than the cuts, 
otherwise Y is set to the cuts value) 
 

The methods are compared using two different error 
measurements.  The first is based on the percentage of times the 
derived mean is significantly different from the true mean using a 
student t-test at the 0.1 level.  The second is the based on the 
relative difference in the derived and true mean.  The mean 
relative difference is calculated over all the distribution 
parameters.  
 

FINDINGS 
If only a small percentage of the values have been censored, 
there is little bias introduced by any of the replacement 
techniques (Table 1).  At the 5th percentile cut-off, the derived 
mean for these situations is never significantly different from the 
true mean for any of the replacement techniques.  At the 10th 
percentile, some significant differences are observed.  The largest 
error rate (8%) is for replacement with zero for the combination of 
the following parameters, N=1000, mean=4, and standard 
deviation=1.5. 
 
Conversely, if the percentage of censored values is large, none of 
these replacement techniques are adequate.  The percent of 
times that the true mean is significantly different from the derived 
mean ranges from 33.87 to 100% over all the methods when the 
75th percentile is used as the cut-off.  Even at the 50th percentile, 
the error rate is high for some combinations of sample size, mean 
and standard deviation.  For N=1000, mean=50, and standard 
deviation =5 the error rate is 100%, indicating that all of the 
derived means are significantly different from the true mean. 
 
A difference in the replacements techniques is also obvious at the 
25th percentile cut-off level.  Replacement with 0 has the highest 
error rate of 33.33%; replacement with the limit of detection 
divided by the square root of 2 has an error rate of 0.  The overall 
error rate is 15%.   
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Table 1:  Percentage of Student t-test p-values less than 0.10 for 
the replacement methods 
 
N=500, mean=4, std=1.5 
 Replacement Value 
Level ZERO LOD/2 LOD//2 overall 
05 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 
25 100.00 0.40 0.00 33.47 
50 100.00 100.00 0.00 66.67 
75 100.00 100.00 40.80 80.27 
overall 60.00 40.08 8.16 36.08 
N=1000, mean=4, std=1.5 
 Replacement Value 
Level ZERO LOD/2 LOD//2 overall 
05 0.00 0.00 0.00 0.00 
10 7.60 0.00 0.00 2.53 
25 100.00 69.20 0.00 56.40 
50 100.00 100.00 0.00 66.67 
75 100.00 100.00 90.00 96.67 
overall 61.52 53.84 18.00 44.45 
N=500, mean=10, std=5 
 Replacement Value 
Level ZERO LOD/2 LOD//2 overall 
05 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 
25 0.00 0.00 0.00 0.00 
50 20.40 0.00 0.00 6.80 
75 100.00 0.00 1.60 33.87 
overall 24.08 0.00 0.32 8.13 
N=1000, mean=10, std=5 
 Replacement Value 
Level ZERO LOD/2 LOD//2 overall 
05 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 
25 0.00 0.00 0.00 0.00 
50 100.00 0.00 0.00 33.33 
75 100.00 0.00 94.80 64.93 
overall 40.00 0.00 18.96 19.65 
N=500, mean=50, std=5 
 Replacement Value 
Level ZERO LOD/2 LOD//2 overall 
05 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 
25 0.00 0.00 0.00 0.00 
50 0.00 100.00 99.60 66.53 
75 100.00 100.00 100.00 100.00 
overall 20.00 40.00 39.92 33.31 
N=1000, mean=50, std=5 
 Replacement Value 
Level ZERO LOD/2 LOD//2 overall 
05 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 
25 0.00 0.00 0.00 0.00 
50 100.00 100.00 100.00 100.00 
75 100.00 100.00 100.00 100.00 
overall 20.00 40.00 39.92 33.30 
Overall Sample Types. 
 Replacement Value 
Level ZERO LOD/2 LOD//2 overall 
05 0.00 0.00 0.00 0.00 
10 1.27 0.00 0.00 0.42 
25 33.33 11.60 0.00 14.98 
50 70.07 66.67 33.27 56.67 
75 100.00 66.67 71.20 79.29 
overall 40.93 28.99 20.90 30.27 

 
There is a difference in the overall error rate for the different 
methods of replacement.  Replacement with the limit of detection 
divided by the square root of two has the smallest overall error 
rate (21%); while the replacement with zero has almost twice the 
overall error rate (41%).   
  
The error rate is affected by the choice of mean and standard 
deviation.  The mean of 10 and standard deviation of 5 produces 
the smallest overall error rate, 14%.  Further investigation into the 
relationship between distribution parameters and the error rate is 
needed to assess the cause of this effect and how to interpret it. 
 
The extrapolation method (Table 2) is a marked improvement 
over the simple replacement techniques.  The largest error rate is 
18% at the 75th percentile cut-off level.  This method is not as 
sensitive to the mean and standard deviation of the original 
distribution.  The overall error rate of 1.24% is markedly different 
from the rate of 20.90% from the best of the replacement 
techniques, LOD//2.   
 
Table 2:  Percentage of Student t-test p-values less than 0.10 for 
the Extrapolation method 
 

Cut-off Level Distributions 
parameters 05 10 25 50 75 overall 
N=500,  
mean=4, std=1.5 

0.0 0.0 0.0 0.8 17.6 3.68 

N=1000,  
mean=4, std=1.5 

0.0 0.0 0.0 0.4 18.0 3.68 

N=500,  
mean=10, std=5 

0.0 0.0 0.0 0.0 0.0 0.0 

N=1000, mean=10, 
std=5 

0.0 0.0 0.0 0.0 0.0 0.0 

N=500,  
mean=50, std=5 

0.0 0.0 0.0 0.0 0.0 0.0 

N=1000, mean=50, 
std=5 

0.0 0.0 0.0 0.0 0.0 0.0 

overall 0.0 0.0 0.0 0.2 6.0 1.24 
 
The method of maximum likelihood estimation (Table 3) has the 
best overall error rate (0.7%).  Only at the 75th percentile cut-off 
level does the error rate differ from zero.  There is, however, an 
effect by the choice of mean and standard deviation on the error 
rate, as with the replacement techniques.  The highest error rate 
observed is 11%.   
 
Table 3:  Percentage of Student t-test p-values less than 0.10 for 
the Maximum Likelihood Estimate 
 

Cut-off Level Distributions 
parameters 05 10 25 50 75 overall 
N=500,  
mean=4, std=1.5 

0.0 0.0 0.0 0.0 10.8 2.2 

N=1000,  
mean=4, std=1.5 

0.0 0.0 0.0 0.0 10.8 2.2 

N=500,  
mean=10, std=5 

0.0 0.0 0.0 0.0 0.0 0.0 

N=1000, mean=10, 
std=5 

0.0 0.0 0.0 0.0 0.0 0.0 

N=500,  
mean=50, std=5 

0.0 0.0 0.0 0.0 0.0 0.0 

N=1000, mean=50, 
std=5 

0.0 0.0 0.0 0.0 0.0 0.0 

overall 0.0 0.0 0.0 0.0 3.6 0.7 
 
Bias can also be measured with the percent relative difference 
between the derived and true means.  Using this measure, the 
effect of choice of parameters is removed.  There is little 
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difference between the extrapolation and the MLE techniques 
(Table 4).  The replacement techniques performed worse than the 
computational methods, with the replacement by zero having the 
largest relative difference (Figure 1).  The LOD/√2 replacement 
has the smallest relative difference of all the replacement 
methods using these data.  
 
Table 4: Percent Relative difference between derived and true 
means 
 

  Replacement Technique Cut-off 
Level MLE Ext Zero LOD/2 LOD/√2 
5 -0.01 0.01 -1.67 -0.50 -0.01 
10 -0.00 0.01 -4.32 -1.40 -0.18 
25 -0.00 0.04 -14.71 -4.95 -0.90 
50 0.06 0.13 -37.09 -12.08 -1.72 
75 0.34 0.35 -64.73 -19.01 -0.07 
 
 
Figure 1:  Percent relative difference between the derived and 
true means 
 

 
 

CONCLUSION 
Distributions of normally distributed data were generated with 
three different mean and standard deviation combinations.  These 
data were censored from 5 to 75 percent to test some common 
techniques for handling left-censored data.  Simple substitution 
techniques are adequate if only a small percentage of the values 
have been censored.  The error rate and relative difference in the 
means both increase once the percentage of censored values 
reaches 25%.  Replacement with the LOD//2 appears to be the 
best choice of replacement values.  The reason for the large 
difference between the LOD/2 and LOD//2 estimates is not 
readily apparent.  The extrapolation and maximum likelihood 
techniques produce estimates with smaller bias and error rates 
than those from the replacement techniques.  Furthermore, the 
error rate is less affected by the distribution parameters with the 
both the extrapolation and maximum likelihood technique.  The 
maximum likelihood technique appears to have worked best, 
overall.  Since the maximum likelihood technique is an iterative 
method, there are situations were there may not be a solution; 
however, the extrapolation technique has a closed form solution.  

In addition, the extrapolation technique is more intuitive and, thus, 
more transparent.  Therefore, the extrapolation technique has 
some advantages over the maximum likelihood technique. 
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ATTACHED CODE 
 
***************************; 
proc means data=ttest1 noprint;  
 by group; 
 var below; 
 output out=stat1 n=n sum=k; 
run; 
 
***************************; 
proc rank data=two out=temp2n normal=blom;  
 var x; 
 ranks prob; 
run;   
*****************************************; 
 
proc reg data=temp3 outest=stat2 noprint; 
 by group; 
 model x = prob; 
run; 
 
*****************************************; 
*** Since there is only a mean and std and not 
data, the t-test is calculated within a 
datastep. 
***; 
 
data testit; 
 merge stat2 
       stat1 (keep=group n k) end=eof; 
 
 replace= substr(group, 1, 1); 
 level  = substr(group, 2); 
 
** Retaining the values for the first record.  
This is the parent distribution to which all 
others are compared. **; 
  
 retain mean1 s1 n1 ss1;  
  
 if _n_=1 then do; 
  mean1= intercept; 
  s1 = prob **2; 
  n1 = n; 
  SS1 = s1*(n1-1); 
 end; 
  
 else do; 
  mean2= intercept; 
  s2   = prob **2; 
  n2   = n; 
  SS2  = s2*(n2-1); 
 
  sp   = (ss1 + ss2) / (n1 + n2 -
2); 
    
*** Student t ***; 

t = (mean1 - mean2) / 
sqrt(sp**2/n1 + sp**2/n2); 

 
    p = probt(t,n1+n2-2); 
 
 
    
** Relative difference in the means **;  
  bias = (mean2-mean1) / mean1; 
   
 end; 
  
run; 

 




