ABSTRACT
A Swimmer plot is a useful visual tool to assess treatment efficacy for individual subjects in oncology clinical trials. These efficacy endpoints may include tumor response evaluation over time as measured by Response Evaluation Criteria in Solid Tumors (RECIST), or percent change from baseline in target lesions for measurable disease as defined by the presence of at least one measurable lesion. These endpoints are always juxtaposed with other valuable information, such as treatment doses, duration of treatment, primary tumor type, and treatment status to create a compelling visual presentation.

There are many industry publications describing how to create swimmer plots in SAS. They provide a useful framework for using either SGPLOT or GTL to generate swimmer plots. This paper will build on the flexibility of SAS GTL to go further behind the scenes to illustrate how to prepare the data structure and variables for a customized swimmer plot. Focus will be placed on using dynamic programming for addressing missing data. The SGRENDER procedure will be used to create the graph based on the prepared data set and the graph template created in PROC TEMPLATE.

KEY WORDS
Swimmer Plot, Oncology Clinical Trial, SAS GTL.

INTRODUCTION
A swimmer plot may display individual patient data by dose group and primary tumor type (below). The bars represent the duration of treatment in weeks. Annotation can be added for the following information: tumor response assessment (such as CR, PR, SD, PD) over time, percent change at maximum reduction from baseline in target lesions, and treatment status. This paper will show how to prepare the data structure and variables referenced by the graph template and the SGRENDER procedure.

Figure 1. A Swimmer Plot
There are three steps to put together the swimmer plot:

Step 1: Create bars for treatment duration by dose group and primary tumor type for individual subjects. A blank line is added between each dose group. The VECTORPLOT and DISCRETELEGEND statements will be used in PROC TEMPLATE.

Step 2: Annotate the tumor response over time, treatment status, and the percent change at maximum reduction from baseline in target lesion for measurable disease. The SCATTERPLOT and DISCRETELEGEND statements in PROC TEMPLATE will be used for the annotation.

Step 3: Annotate the dose group values and label on the Y-axis. In addition, lines will be drawn for grouping each dose group and for the X and Y axes. The SCATTERPLOT and VECTORPLOT statements will be used.

GTL

Here is the skeleton of the GTL code used for creating the swimmer plot. The style template used by ODS RTF is included in [APPENDIX 2](#).

```gtl
ODS RIF file="C:\Users\tsang\paper2017\step1.rtf" style=PR0126pt1;
ods graphics / reset=all border=off width=10in height=6.5in;
proc template;
define statagraph splot; begingraph;
...... more steps here ......
endgraph;
end;
run;

proc sgrender data=step3 template=splot;
run;
ods rtf close;
```

Display 2. GTL

STEP 1:

Create bars for treatment duration by dose group and primary tumor type for individual subjects. A blank line is added between each dose group.

We have the following variables in our step 1 data:

- **USUBJID** - unique subject identification number
- **TRT01P** - planned treatment in text
- **TRT01PN** – planned treatment in numeric format with values from 1 to 7
- **PRITMTYP** - primary tumor type
- **TRTDURW** - treatment duration in week
SCSTAT - treatment status with values of blank or “ONGOING”

AVALC - percent change at maximum reduction from baseline in target lesion (unique value per subject)

ADW - tumor response assessment time from date of first dose in weeks over time, e.g. subject 004 has assessments at week 12 and week 22.

OVRLRESP – the overall tumor response assessment using RECISIT over time, e.g. subject 006 has a SD assessment at week 12 and another SD assessment at week 22.

Display 2. Snapshot of the STEP1 data

Note that the data set is sorted by descending treatment group (TRT01PN) and treatment duration (TRTDURW). An additional record is added between each dose group. A new record identifier variable (ID) is added based on the sorting order. The ID variable is used for the Y-axis display. Please reference Appendix 1 for the code for generating the STEP1 data.

PROC SGRENDER will call the STEP1 data and the SGPLOT graph template. In PROC TEMPLATE, the VECTORPLOT statement will be used to create the horizontal bars based on treatment duration (TRTDURW) for the X axis and the record identifier (ID) for the Y axis. These values are also grouped by primary tumor type (PRITMTYP). Note that the top right legend for the grouped variable is created by the DISCRETELEGEND statement.

VectorPlot X=trtdurw Y=id XOrigin=0 YOrigin=id/group=pritmtyp Lineattrs=(Pattern=1 Thickness=7px) ARROWHEADS=FALSE NAME="type";

DiscreteLegend "type" / Location=inside across=1 autoAlign=(topright) Title=" " Border=false valueattrs=(SIZE=8pt);
Figure 2. Step 1 Graph

STEP 2:

Annotate the tumor response over time, treatment status, and the percent change at maximum reduction from baseline in target lesion for measurable disease.

Display 3. Snapshot of the STEP2 data
Here are the additional derived variables in STEP2:

PD – lesion assessment in week for PD (ADW when OVRLRESP =PD)

SD – lesion assessment in week for SD (ADW when OVRLRESP =SD)

MAXX – is equivalent to treatment duration (TRTDURW), an adjustment will be made for the overlapping time by adding a value of 0.5 (TRTDURW+0.5). For example, subject 504 has 16 weeks of treatment (TRTDURW=16) and a PD assessment at week 16 (PD=16). The MAXX value for the subject is adjusted to 16.5 to avoid overlapping of the annotation. MAXX will be used for deriving the time on the X axis for percent change and treatment status.

X1 – is the time for percent change at maximum reduction from baseline (AVALC). It is derived as MAXX + 0.4 when AVALC value is available.

XE – is the time for treatment status (SCSTAT). It is derived as MAXX + 1 when SCSTAT value is "ONGOING".

Missing data for tumor response is a common occurrence. We have built in dynamic code using PROC SQL and macro do-loop as shown below to ensure that accommodation can be made for any missing response data.

Variables for lesion duration (CR, PR, SD, and PD) will only be created based on the availability of the response assessment data.

```
proc sql noprint;
   select distinct ovrlresp into: resp separated by " " from step1;
quit;

%put &resp;
%let r=1;
data step2;
   set step1;
   by usubjid;
   if not (first.usubjid and last.usubjid) then do;
      if first.usubjid then avalc='';
   end;
   maxx=trtdurw;
   %do %while (%scan(&resp,&r) ne );
      if ovrlresp="%scan(&resp,&r)" then %scan(&resp,&r)=adw;
      if maxx>. and %scan(&resp,&r)=maxx then maxx=maxx+0.5;
      %let r=&r+1;
   %end;
   if avalc>'' then x1=maxx+0.4;
   if scstat='ONGOING' then xe=maxx+1;
run;
%let r=1;
```

In PROC TEMPLATE, the SCATTERPLOT statements are used to create annotation for the tumor response over time (SD and PD), treatment status (XE), and the percent change at maximum reduction from baseline (X1). The DISCRETELEGEND statement will be used to create the legend for these endpoints. Note that dynamic programming is also put in place in PROC TEMPLATE for the potential missing tumor response data as shown below.

```
ScatterPlot X=x1 Y=id / MarkerCharacter=avalc MARKERCHARACTERATTRS=(family='Courier New' size=7pt weight=bold) NAME="SCATTER";
%do %while (%scan(&resp,&r) ne );
   %if %scan(&resp,&r)=CR %then %do;
      ScatterPlot X=cr Y=id / Markerattrs=(color=black Symbol=diamond Size=9px) LegendLabel="CR" NAME="cr";
   %end;
%end;
```
%end;
%if %scan(&resp,&r)=PR %then %do;
 ScatterPlot X=pr Y=id / Markerattrs=(color=black Symbol=triangle
 Size=9px) LegendLabel="PR" NAME="pr";
%end;
%if %scan(&resp,&r)=SD %then %do;
 ScatterPlot X=sd Y=id / Markerattrs=(color=black Symbol=square
 Size=9px) LegendLabel="SD" NAME="sd";
%end;
%if %scan(&resp,&r)=PD %then %do;
 ScatterPlot X=pd Y=id / Markerattrs=(color=black Symbol=circle
 Size=9px) LegendLabel="PD" NAME="pd";
%end;
%let r=%eval(&r+1);
%end;
%let r=1;
ScatterPlot X=xe Y=id / Markerattrs=(color=black Symbol=greaterthan
 Size=10px) LegendLabel="Ongoing" NAME="on";
DiscreteLegend
 %do %while (%scan(&resp,&r) ne);
 %if %scan(&resp,&r)=CR %then %do;
 "cr"
 %end;
 %if %scan(&resp,&r)=PR %then %do;
 "pr"
 %end;
 %if %scan(&resp,&r)=SD %then %do;
 "sd"
 %end;
 %if %scan(&resp,&r)=PD %then %do;
 "pd"
 %end;
 %let r=%eval(&r+1);
 %end;
"on" / Location=inside across=1 autoAlign=(bottomright) Title=" "
Border=false valueattrs=(SIZE=8pt);

Please reference APPENDIX 1 for the complete PROC TEMPLATE code.
Figure 3. Step 2 Graph

STEP 3:

Annotate the dose group values and label on the Y-axis. In addition, lines will be drawn for grouping each dose group and for the X and Y axes.

Display 4. Snapshot of the STEP3 data

Additional variables for annotating the dose group label and values:

TRT2 – set to “Dosage (mg/kg)” for the additional record. The ID value is set to the maximum ID+2, i.e. 43 + 2 = 45.
XPT – set to an X value of -1.1. A negative value is used because it is smaller than 0 on the X axis. Note that the dose values will be annotated at the X value of XPT and the midpoint (_Yi) of each dose group on the Y axis.

Additional variables for drawing the X and Y axes:
YMAX – set to the maximum ID value, i.e. 43 + 1.5=44.5.
XMAX – set to the maximum X value, i.e. 33 + 1 =34.
Y0 – set to a Y value of -1.
X0 – set to an X value of 0.

Additional variables for drawing a short horizontal line at the midpoint (_Yi) of each dose group:
_XLS – set to an X value of -0.2.
_XLE – set to an X value -0.4.

Additional variables for drawing a vertical line for each dose group:
_YLS1 – the minimum Y value for TRT01PN=1, derived as the first ID value – 0.2, i.e. 39 – 0.2=38.8.
_YLE1 – the maximum Y value for TRT01PN=1, derived as the last ID value + 0.2, i.e. 42 + 0.2=42.2.
_Y1 – the mid-point of the Y value range for TRT01PN=1, derived as the first ID value + (the last ID value – the first ID value)/2, i.e. 39 + (42 – 39)/2 = 40.5.

Note that _YLSi, _YLEi, and _Yi where i=1 to 7 (maximum planned treatment value), will also be derived based on the total number of treatment groups in a dynamic fashion as show below:

```
proc sql noprint;
   select max(trt01pn) into: t from step3;
quit;

data step3;
   set step3;
   by trt01pn id;
   %do i=1 %to &t;
      if trt01pn=&i then do;
         if first.trt01pn and last.trt01pn then do;
            _yls&i=id-0.2;
            _yle&i=id+0.2;
            _y&i=id;
         end;
         if not (first.trt01pn and last.trt01pn) then do;
            if first.trt01pn then do;
               retain _yls&i .;
               _yls&i=id-0.2;
            end;
            if last.trt01pn then do;
               _yle&i=id+0.2;
               _y&i=_yls&i+ (_yle&i-_yls&i)/2;
            end;
         end;
      end;
   %end;
run;
```

We will use the SCATTERPLOT statements to annotate the dose group label (TRT2) and the planned treatment group values (TRT01P) in PROC TEMPLATE. Using treatment group 1 as an example, the dose value will be annotated at the midpoint of treatment group 1 (_Y1).

```
ScatterPlot X=xpt Y=id / MarkerCharacter=trt2 MARKERCHARACTERATTRS=
   (family='Courier New' size=8pt weight=bold);
```
ScatterPlot X=xpt Y=_y1 / MarkerCharacter=trt01p MARKERCHARACTERATTRS=
(family='Courier New' size=8pt weight=bold);

Figure 4. Annotating the Dosing Labels and Values

In addition to creating bars, the VECTORPLOT statements will be also used to draw lines by adjusting the thickness (THICKNESS=). Lines in grey will be added for grouping the planned treatment on the Y axis. Using treatment group 1 as an example, the first VECTORPLOT statement will draw a vertical line in grey from two set of X, Y coordinates (_xls, _yls1) to (_xls, _yle1), i.e. (-0.2, 38.8) to (-0.2, 42.2). The second statement will draw a short horizontal line from _xls (-0.2) to _xle (-0.4) at the midpoint value (_y1=40.5).

VectorPlot X=_xls Y=_yle1 XOrigin=_xls YOrigin=_yls1 / Lineattrs=(Color=grey Pattern=1 Thickness=1px) Arrowheads=false;

VectorPlot X=_xle Y=_y1 XOrigin=_xls YOrigin=_y1 / Lineattrs=(Color=grey Pattern=1 Thickness=1px) Arrowheads=false;

Figure 5. Drawing the Grey Lines for Grouping Purpose

Furthermore, the VECTORPLOT statements will be used for drawing a line in black for each axis. The first statement will draw a line for the Y axis, from x0, y0 (0, -1) to x0, ymax (0, 44.5). The second statement will draw a line for the X axis, from x0, y0 (0, -1) to xmax, y0 (34, -1).
CONCLUSION

This paper shows how to create a customized swimmer plot in three simple steps using SAS Graph Template Language. Focus has been placed on how to prepare the data structure and variables using dynamic programming to accommodate for missing data in oncology trial. A well-prepared data set is an important first step to create a customized swimmer plot using PROC TEMPLATE and PROC SGRENDER. SAS GTL is a versatile tool for generating any professional graphics if one is willing to go behind the scenes to explore and prepare the data.

REFERENCE

APPENDIX 1

Here is the complete code for creating our swimmer plot.

%inc "C:\Users\tsangc\paper2017\figtemplate1.sas";
libname libanal "C:\Users\tsangc\paper2017";
title1 "Duration of Treatment in Patients";

%macro step3;
proc sort data=libanal.adsl out=adsl;
 by descending trt01pn descending trtdurw pritmtyp usubjid;
run;

data adsl;
 set adsl;
 by descending trt01pn descending trtdurw pritmtyp ;
 output;
 if last.trt01pn then do;
 avalc=' '; usubjid=' '; trt01pn=.; trt01p=''; scstat='';
 adw=.; trtdurw=.; output;
 end;
run;

data adsl;
 set adsl;
 id=_n_; run;

proc sort data=adsl;
 by usubjid;
run;

data step1;
 merge adsl (in=a) libanal.adrs ;
 by usubjid;
 if a;
run;

proc sql noprint;
 select distinct ovrlresp into: resp separated by " " from step1;
quit;
%put &resp;
%let r=1;

data step2;
 set step1;
 by usubjid;
 if not (first.usubjid and last.usubjid) then do;
 if first.usubjid then avalc='';
 end;
 maxx=trtdurw;
 %do %while (%scan(&resp,&r) ne);
 if ovrlresp="%scan(&resp,&r)" then %scan(&resp,&r)=adw;
 if maxx>. and %scan(&resp,&r)=maxx then maxx=maxx+0.5;
 %let r=&r+1;
 %end;
 if avalc=' ' then xl=maxx+0.4;
 if scstat='ONGOING' then xe=maxx+1;
run;
%let r=1;

proc sql noprint;
 select max(id) into: maxy from step2 where id>.;
 select max(round(max(trtdurw,adw)))- mod(max(round(max(trtdurw,adw))),3) + 9
 into: maxx from step2 where trtdurw>.;
quit;

data _null_; length list list1 $100; do i=1 to %eval(&maxy+1); list=strip(list)||' '||strip(put(i,best.)); end; do i=3 to %eval(&maxx) by 3; list1=strip(list1)||' '||strip(put(i,best.)); end; call syput('ylist',strip(list)); call syput('xlist',strip(list1)); run;

data step3; set step2 end=eof; if eof then do; call syput('pt',pritmtyp); end; run;

data filler; id=%eval(&maxy+2); trt2='Dosage (mg/kg)'; pritmtyp="&pt"; run;

data step3; set step3 filler; ymax=%sysevalf(&maxy+1.5); xpt=-1.1; x0=0; y0=-1; xmax=%eval(&maxx+1); _xle=-0.4; _xls=-0.2; run;

proc sort data=step3; by trt01pn id; run;

proc sql noprint; select max(trt01pn) into: t from step3; quit;

data step3; set step3; by trt01pn id; %do i=1 %to &t; if trt01pn=&i then do; if first.trt01pn and last.trt01pn then do; _yls&i=id-0.2; Step 3 Data

end; end; run;
Step 3 Data

```sas
_data step3;
set step3;
by trt01pn id;
%do i=1 %to &t;
  if _yls&i>. and trt01pn ne &i then _yls&i=.;
%end;
run;
```

```sas
data step3;
set step3;
by trt01pn id;
%do i=1 %to &t;
  if _yls&i>. and trt01pn ne &i then _yls&i=.;
%end;
run;
```

```sas
proc sort data=step3;
b by id;
run;
```

```sas
option orientation=landscape;
ODS RTF file="C:\Users\tsangc\paper2017\final.rtf" style=PR0128pt1;
ods graphics / reset=all border=off width=10in height=6.5in;
proc template;
define statgraph sgplot;
  begingraph /;
  layout overlay /xaxisopts=(label='Weeks in Treatment'
      labelattrs=(size=8pt) display=(tickvalues label)
      offsetmin=0.1 type=linear
      linearopts=( tickvaluelist=( 0 &xlist)
      viewmin=0 viewmax=&maxx
      TICKVALUEATTRS=(SIZE=3PX))
      yaxisopts=( label='Individual Patient Data'
      labelattrs=(size=8pt) display=(label) type=linear
      linearopts=(viewmin=0 viewmax=%eval(&maxy+3)
      TICKVALUEATTRS=(SIZE=3PX))
      VectorPlot X=trtdurw Y=id XOrigin=0 YOrigin=id/group=pritmtyp
      Lineattrs=(Pattern=1 Thickness=7px) ARROWHEADS=FALSE NAME="type";
      DiscreteLegend "type" / Location=inside across=1 autoAlign=(topright)
      Title=" " Border=false valueattrs=(SIZE=8pt);
  %do %while (%scan(&resp,&r) ne );
    %if %scan(&resp,&r)=CR %then %do;
      ScatterPlot X=cr Y=id / Markerattrs=(color=black Symbol=diamond
      Size=9px) LegendLabel="CR" NAME="cr";
    %end;
  %end;
end;
```

Step 1

Step 2
%if %scan(&resp,&r)=PR %then %do;
 ScatterPlot X=pr Y=id / Markerattrs=(color=black Symbol=triangle
 Size=9px)LegendLabel="PR" NAME="pr";
%end;
%if %scan(&resp,&r)=SD %then %do;
 ScatterPlot X=sd Y=id / Markerattrs=(color=black Symbol=square
 Size=9px)LegendLabel="SD" NAME="sd";
%end;
%if %scan(&resp,&r)=PD %then %do;
 ScatterPlot X=pd Y=id / Markerattrs=(color=black Symbol=circle
 Size=9px)LegendLabel="PD" NAME="pd";
%end;
%let r=%eval(&r+1);
%end;
%let r=1;

ScatterPlot X=xe Y=id / Markerattrs=(color=black Symbol=Greaterthan
 Size=10px) LegendLabel="Ongoing" NAME="on";

Step 2

ScatterPlot X=x1 Y=id / MarkerCharacter=avalc MARKERCHARACTERATTRS=
 (family='Courier New' size=7pt weight=bold) NAME="SCATTER";

DiscreteLegend
%do %while (%scan(&resp,&r) ne);
 %if %scan(&resp,&r)=CR %then %do;
 "cr"
 %end;
 %if %scan(&resp,&r)=PR %then %do;
 "pr"
 %end;
 %if %scan(&resp,&r)=SD %then %do;
 "sd"
 %end;
 %if %scan(&resp,&r)=PD %then %do;
 "pd"
 %end;
 %let r=%eval(&r+1);
%end;
"on" / Location=inside across=1 autoAlign=(bottomright) Title=" " Border=
 False valueattrs=(SIZE=8pt);

ScatterPlot X=xpt Y=id / MarkerCharacter=trt2 MARKERCHARACTERATTRS=
 (family='Courier New' size=8pt weight=bold);
%do i=1 %to &t;
 ScatterPlot X=xpt Y=_y&i / MarkerCharacter=trt01p MARKERCHARACTERATTRS=
 (family='Courier New' size=8pt weight=bold);
 VectorPlot X=_xls Y=_yle&i XOrigin=_xls YOrigin=_yls&i /
 Lineattrs=(Color=grey Pattern=1 Thickness=1px) Arrowheads=false;
 VectorPlot X=_xle Y=_y&i XOrigin=_xls YOrigin=_y&i /
 Lineattrs=(Color=grey Pattern=1 Thickness=1px) Arrowheads=false;
%end;

Step 3

VectorPlot X=x0 Y=ymax XOrigin=x0 YOrigin=y0 / Lineattrs=(Color=black
 Pattern=1 Thickness=1px) Arrowheads=false ;
VectorPlot X=xmax Y=y0 XOrigin=x0 YOrigin=y0 / Lineattrs=(Color=black
 Pattern=1 Thickness=1px) Arrowheads=false ;
endlayout;
endgraph;
end;
run;

proc sgrender data=step3 template=sgplot;
run;

ods rtf close;
%mend;

APPENDIX 2

Here is the code which creates the style template PR0128pt1.

%macro figtemplate1;

proc template;
define style PR0128pt1;
parent=styles.listing;

class graphwalls / frameborder=off;

style GraphData1 / ContrastColor=blue;
style GraphData2 / ContrastColor=darkred;
style GraphData3 / ContrastColor=darkgreen;
style GraphData4 / ContrastColor=darkgreen;
style GraphData5 / ContrastColor=darkorange;
style GraphData6 / ContrastColor=darkyellow;
style GraphData7 / ContrastColor=AQUAMARINE;
style GraphData8 / ContrastColor=darkbrown;

style graphfonts from graphfonts /
'GraphLabelFont' = ("Courier New",8pt,bold)
'GraphValueFont' = ("Courier New",8pt,bold);

replace fonts /
'Titlefont' = ("Courier New",8pt,Bold)
'Titlefont2' = ("Courier New",8pt,Bold)
'Strongfont' = ("Courier New",8pt)
'EmphasisFont' = ("Courier New",8pt)
'FixedEmphasisFont' = ("Courier New",8pt)
'FixedStrongFont' = ("Courier New",8pt)
'FixedHeadingFont' = ("Courier New",8pt)
'BatchFixedFont' = ("Courier New",8pt)
'FixedFont' = ("Courier New",8pt)
'headingEmphasisFont' = ("Courier New",8pt,Bold Italic)
'headingFont' = ("Courier New",8pt,Bold)
'docFont' = ("Courier New",8pt,Bold)
'FootnoteFont' = ("Courier New",8pt,Bold);

style table from table/
rules=groups
frame=void
cellspacing=0.1mm
cellpadding=0.1mm;
style PageNo from PageNo/
 font_size=0.1pt
 background=white
 foreground=white;

style BodyDate from BodyDate/
 foreground=white
 background=white
 font_size=0.1pt;

style Header from Header /
 Background = undef
 borderwidth = 0.25pt
 just = center
 frame = below
 rules = groups;

style SystemFooter from TitlesAndFooters
 'Controls system footer text.'/
 font = Fonts('FootnoteFont');

replace Body from Document
 "Controls the Body file. " /
 bottommargin = 0in
 topmargin = 0.75in
 rightmargin = 1in
 leftmargin = 1in;
end;
run;
@mend;