ABSTRACT
Quora is a Q&A social network centered on the idea of promoting ideas and knowledge. With over 100 million monthly visitors, it’s not surprising that many people ask similarly worded questions causing site visitors to spend more time discovering the best response to their question. This also frustrates authors because they feel they need to answer multiple versions of the same question. This paper aims at solving a challenge released by Quora to improve the experience of its authors and site visitors by grouping queries with similar intent using SAS.

To ensure that different words are processed equivalently as the same representative parent term, Pydictionary module in Python, based on thesaurus.com, was used for extracting synonyms for the most frequently occurring terms in the term-by-document matrix. With the help of SAS Enterprise Miner, singular value decomposition (SVD) was implemented to reduce the dimensions of the term-by-document frequency matrix. Euclidean distance was used to determine distance between sentences that have been projected into the SVD space. In addition, Inverse Document Frequency weight was chosen so that frequently occurring terms will have been down-weighted and the rarer but concentrated terms have the greatest influence on similarity. The accuracy of the classification of question pairs as duplicates and non-duplicates was 62.4%.

Further research would be continued to make a utility which would predict if a question is duplicate based on the prior knowledge imbibed into it thereby acting as a recommender system for Quora.

INTRODUCTION
Where else but Quora can a traveler help a chef who was confused to make a list of must visit places and could get cooking tips in return? Quora is a platform to share and gain knowledge. Connecting people who have knowledge to the people who need it would empower everyone to share their understanding to better appreciate the rest of the world.

With over 100 million people who visit Quora every month, it’s likely that many people ask similar questions with slightly different formations. Numerous questions with similar intent can cause explorers to spend more time discovering the best response to their question, and also could make authors feel they need to answer multiple versions of the same question.

DATA DICTIONARY
The public dataset released by Quora consists of over 400,000 lines of potential question duplicate pairs. Each line contains IDs for each question in the pair, the full text for each question, and a binary value that indicates whether the line truly contains a duplicate pair or not.

Table 1 illustrates Data Dictionary.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>This field represents row number</td>
</tr>
</tbody>
</table>
Table 1. Data Dictionary

<table>
<thead>
<tr>
<th>QID1</th>
<th>Unique ID for Question 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>QID2</td>
<td>Unique ID for Question 2</td>
</tr>
<tr>
<td>Question1</td>
<td>Question asked in Quora</td>
</tr>
<tr>
<td>Question2</td>
<td>Question asked in Quora</td>
</tr>
<tr>
<td>Is_Duplicate</td>
<td>Binary Target Variable indicating if question pair is duplicate</td>
</tr>
</tbody>
</table>

METHODOLOGY

Firstly, the public dataset on Quora Duplicate questions pairs was used as the data source. Exploratory Analysis on the dataset was performed in SAS. SAS Enterprise Miner was used to clean the data (question pairs) using techniques such as text parsing and text filtering. Using PyDictionary module, consolidated synonym list for the most frequently occurring terms in the term-by-document matrix was created. Singular value Decomposition (SVD) dimensions has been computed to transform the original weighted, term-document frequency matrix into a dense but low dimensional representation. The Distance Procedure was performed to compute Euclidean distances as a measure of distance/similarity between the documents using SVD dimensions. Finally, the similarity measure is compared with the target variable present in the original data to determine the accuracy of the classification.

Figure 1. Illustrates the project methodology.

PROCESS FLOW

Figure 2. Illustrates Process Flow used in SAS Enterprise Miner.

DATA EXPLORATION

Quora Duplicate Questions Dataset was read-in using SAS. Frequency distribution of the binary indicator variable illustrates that 36.92% of the data contains duplicate question pairs and the rest doesn’t.

Figure 3. Illustrates Frequency Distribution.
DATA PREPARATION & CLEANING

For the purpose of classification of semantically equivalent queries, the binary indicator variable present in the raw data was ignored. The raw dataset now consists of a single column of stacked question pairs along with their question ID’s.

Data was imported and cleaned using Text Parsing and Text Filter nodes in SAS Enterprise Miner. In order to reduce the dimensionality of the term by document matrix, parts of speech has been turned off but spell check and stemming was performed.

The Log frequency weighting option was used in the Text Filter node to dampen the effect of terms that occur many times in a document. Inverse Document Frequency was used as the term weighting method to give greater weight to terms that occur infrequently in the document collection.

SYNONYM LIST

Usually Information Retrieval is performed by literally matching terms in documents with those of a query, but based on the concept of synonymy, the literal terms sometimes might not match with the query. A synonym list enables us to specify different words that should be processed equivalently, as the same representative parent term.

In order to address this issue in the paper, most frequently occurring terms in the term-by-document matrix has been exported and synonyms have been identified for the top 2,000 terms sorted by descending frequency.

Figure 4. Illustrates Term by Document Matrix.

A synonym list has been created using PyDictionary, a dictionary module in python to get synonyms. It uses thesaurus.com for getting synonyms. They have been imported back in Text Parsing Node and the
process flow was run until Text Filter Node.

Figure 5. shows the partial code snippet illustrating the approach used for scraping synonyms from the list of words given as inputs.

```python
from PyDictionary import PyDictionary
dictionary = PyDictionary()
dictionary = dictionary(["best", "good", "people", "learn", "difference", "life", "know", "time", "money", "work", "year", "mean", "thing"], print (dictionary.getSynonym())
```

Figure 5. Python Code Snippet

COMPUTATION OF SVD

Parsing a document collection generates a term-by-document frequency matrix that is often large. In this case, with several thousand documents would require too much of computational time and space to analyze the matrix effectively. Dealing with this high dimensional data was a challenge here. To improve the performance, singular value decomposition (SVD) was implemented to reduce the dimensions of the term-document frequency matrix by transforming the matrix into a lower dimensional, more compact, and informative form.

Text Cluster Node determines the number of SVD dimensions based on the SVD Resolution and Max SVD Dimensions properties in SAS Enterprise Miner. SVD Resolution was set to low and Max SVD Dimensions are specified as 100. After the Text Cluster Node was run, 51 SVD dimensions were obtained.

DISTANCE PROCEDURE

Euclidean Distance was used to determine distance between sentences that have been projected into the SVD space because the vectors have been normalized to unit length in SAS Text Miner. In addition, since Inverse Document Frequency weight has been chosen, frequently occurring terms will have already been down-weighted so that the rarer but concentrated terms have the greatest influence on similarity.

TextCluster_docs dataset in the workspace of Enterprise Miner folder has been considered for the computation of distances using distance procedure.

SAS Code used to compute the distance:

```sas
DATA cosine.txtcluster(keep = index textcluster_svd1-textcluster_svd51);
   Set cosine.textcluster_docs;
   Run;

DATA cosine.cluster_svd;
   Set cosine.txtcluster;
   Doc = PUT(index,$8.);
   Run;

PROC DISTANCE DATA=cosine.cluster_svd OUT=cosine.cosine_svd_euclid
   METHOD=euclid nostd;
   Var interval(textcluster_svd1--textcluster_svd51);
   Id doc;
   Run;
```

Figure 6. demonstrates the output of the distance procedure.
RESULTS & FINDINGS:

After a trial and error method, a threshold of 0.75 has been chosen to identify semantically equivalent queries among the question papers. If the similarity metric for a given question pair is \(\leq 0.75 \), then the pair is considered to be a duplicate. The predicted response has been compared to the actual response present in the dataset.

The assessment of the classification has been performed. The accuracy of the classification was 62.4\% with a misclassification rate of 37.6\%.

SAS Code used to compute the accuracy of Classification:

```sas
PROC TRANSPOSE DATA =cosine.cosine_svd_euclid OUT = cosine.test
  PREFIX = similarity;
  BY doc;
run;

DATA cosine.test1(KEEP = pair similarity1);
  SET cosine.test;
  If similarity1 ne . Or qid1 ne qid2;
  Qid1 = SUBSTR(_name_,2);
  Qid2 = substr(compress(doc),1);
  Pair = CATX("," ,qid1,qid2);
run;

DATA cosine.rawdata_target(KEEP = pair is_duplicate);
  SET cosine.raw_data;
  Pair = CATX("," ,qid1,qid2);
run;

PROC SQL;
  Create table cosine.result as
  Select a.pair,is_duplicate,similarity1
  From cosine.test1 a, cosine.rawdata_target b
  Where a.pair = b.pair
  Order by a.pair;
```
CONCLUSION

This paper illustrates the application of SAS Enterprise Miner to solve a challenge released by Quora. The research was intended to identify semantically equivalent queries in the Quora Duplicate questions dataset in order to improve the experience of both the groups of active seekers and writers. Computation of Euclidean distance using Distance Procedure on SVD dimensions of the data, gave an accuracy of 62.4%.

Since using PyDictonory module in python would only fetch five synonyms for every word, the accuracy could be improved by refining the synonym list considered in the current analysis. Also, considering parts of speech in the text analysis could enhance the capability of classification.

FUTURE SCOPE

The further research would be continued to make a utility which would predict if a question is duplicate based on the prior knowledge imbibed into it thereby acting as a recommender system for Quora.

REFERENCES

• Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS® ® by Goutam Chakraborty, Murali Pagolu, Satish Garla.

• Text Mining Reveals the Secret of Success: Identification of Sales Determinants Hidden in Customers' Opinions, Rafał Wojdan, Warsaw School of Economics

ACKNOWLEDGMENTS

I would like to thank my Program Director Dr. Goutam Chakraborty, SAS Professor of Marketing Analytics and Dr. Miriam McGaugh, Clinical Professor, Spears School of Business, Oklahoma State University for their constant guidance and support throughout my research.

Also, I would to thank Mr. Satish Garla, Analytical consultant at SAS for his constant inputs and guidance, without whom I couldn’t have done this research.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 Varsha Reddy Akkaloori
 Oklahoma State University
 Phone: (513)282-9496
 Email: varsha.akkaloori@okstate.edu
 LinkedIn: https://in.linkedin.com/in/varsha-reddy-akkaloori

Varsha Reddy Akkaloori is a Graduate student in Business Analytics at Oklahoma State University. She is currently working as a Graduate Research Assistant at Oklahoma State University with Love’s Travel Stops under the mentorship of Dr. Goutam Chakraborty. She is SAS® Certified Advance programmer and Base programmer for SAS 9.