Predicting student success based on interaction with virtual learning environment
Vivek Doijode, Neha Singh, Oklahoma State University

ABSTRACT

Online learning can be called the millennial sister of classroom learning; tech savvy, always connected, and flexible. These features offer a convenient alternative to students with constraints and working professionals to learn on demand. According to National Center for Education Statistics, over 5 million students are currently enrolled in distance education courses. The growing trend and popularity of MOOCs (Massive Open Online Courses) and distance learning makes it an interesting area of research. We plan to work on OULA (Open University Learning Analytics) dataset. Learning analytics provides many insights on the learning pattern of students and on module assessments. These insights may be researched to enhance participants’ learning experience. In this paper, we predict students’ success in an online course using regression, clustering and classification methods. We have a mix of categorical and numeric inputs present in the OULA datasets that are in csv file formats and contain information for more than 30,000 students pertaining to 7 distance learning courses, student demographics, course assessments and student interaction with virtual learning environment. We have merged tables together using unique identifiers. We will first explore the merged data using SAS® to generate insights and then build appropriate predictive models.

INTRODUCTION

Open university is the one of the largest distance learning university in United Kingdom(UK). It offers various courses for the undergraduate and graduate students and is vastly popular among the students who cannot be on campus for various reasons. It has more than 250,000 students enrolled making it largest academic institute in the country. With the advent of internet, it has become possible for distance learning universities to provide course materials online in different formats. Students can access these study materials anywhere and even give exams online. Universities can capture and record the way students interact with the learning material. Many students end up failing courses or withdrawing. Such data can provide useful and actionable insights into students’ learning behavior which universities can use to improve student performance by providing them with additional help wherever necessary.
DATA DESCRIPTION & METADATA

The database schema depicts information collected for students in different categories:

- Student Demographics
- Student Activities
- Module Presentations

The below data dictionary provides details about each field in the table and the database schema

Fig 1: Database Schema

Final dataset is obtained by joining 7 different tables. The Student Info table contains demographic details of students, Student Registration contains information on when the students registered/unregistered for the courses, StudentVLE and VLE tables contain virtual learning environment information, Student Assessment, Assessment tables contain information on assessments.
METHODOLOGY

Information from VLE tables was summarized to get the total sum clicks for various types of activities the student undertakes for a course module. Each student undergoes several assessments over the duration of course. Assessments were weighted and students may opt to drop out of courses by withdrawing from courses at any point the university deems fit. Data is in the form of seven different csv files that are imported into SAS® for further analysis.

DATA PREPARATION & EXPLANATORY ANALYSIS

The csv data were imported to SAS Enterprise Guide and was put under merging and cleaning phases where we had to merge Student demographic data with the Student Registration and Virtual Learning Environment data. Our data did not have missing values but since students give multiple tests during the duration of the course we had to provide the sequence in which students give assessments so we created a new variable that captured the assessment number.
Information from VLE tables was summarized to get the total sum clicks for various types of activities the student undertakes for a course module. Each student undergoes several assessments over the duration of course. Assessments were weighted and students may opt to drop out of courses by withdrawing. The final dataset contains 26 variables with Final_result as the target.

Fig 4. shows percentage rates of results by regions. South region had the highest pass percentage whereas Wales had the highest failure percentage and North Western region with highest percentage of withdraws.

Fig. 4 Percentage of Pass/Fail/Withdrawn by region

Fig 5. represents percentages of Pass, Fail and withdraws for each of the modules. Module AAA had the highest pass percentage and lowest percentage of failure whereas module CCC had the lowest pass percentage and highest percent withdraws.
Fig. 5 Module wise percentages of Pass/Fail/Withdrawn

Fig. 6 Provides frequencies of Pass, Fail and Withdraws for each assessment number.

Fig. 6 Frequencies of Pass/Fail/Withdrawn

In Fig 7. Students who passed the modules had the most number of total clicks on materials compared to students who failed or withdrew from the courses.
Using decision tree, we would be able to explain the most important variables of our analysis by observing the top segment of the decision tree and analyzing the variable importance matrix.

From fig 8 we can see that date_unregistration, latest_date_of_interaction, score, module and total_clicks are important variables and later we will use these to build the decision tree. Target variable like ours which is categorical require data to be partitioned a chi square statistics is computed. The logworth statistic is used for pruning or growing a tree. The first split is done on the date_unregistration which splits the data into two groups. Here this first split separates the 2 groups on 3 levels of the target variable. Other criteria used for splitting are Gini coefficient and Entropy. Gini coefficient identifies between the heterogeneous and homogenous groups.
The best split will be something that differentiates data into more homogenous groups. Here we look at probability value or p value of Pearson chi-squared statistic because we have a multi-outcome target variable.

Fig 9: Decision Tree

Fig 9. represents an interactive decision tree model which uses the classifying variables based on their (logworth) value. Misclassification rate of the train and validation data is close and is less as 0.10, so that is a fair estimate of a good model but if we look at the data split, this split results into homogenous groups of withdrawn and pass students which at this point is not desirable. Hence we ignore this variable and instead do our first split on the second most important variable. i.e. latest_date_of_interaction.
It splits into 2 child nodes based on if the student had the latest interaction with the course material in greater than 206 days from the start of lesser. It gives us some interesting results and which is aligned to previous research done of the similar subject. Students greater than 206 days had as low as 1.4% withdrawn percent rate. 2nd split was done on the score variable which is a cumulative of all the TMA (Tutor Marked Assessment) for that module per student. Group of students who scored greater than 57 on any assessment had a high pass percentage of 90.01 as compared to the other group who scored less than 57 in any of the assessments.

Fig 11 : Variable Importance

With increasing complexity of tree, we need to plot the tree size and variation explained at every level, we can find at which level the variation is minimum. Accordingly, we can prune the tree to get the simplified version of the tree. Misclassification error for this model has similar values for Train and validation and a values of 0.18.
CONCLUSIONS

• The most important variables are latest_date_of_interaction that is measured as number of days relative to the start of module presentation, followed by Score, Code_module.
• Students who scored greater than 57 in initial assessments had a high pass percentage of 90.01 as compared to the other group who scored less than 57.
• Of the students who scored more than 73.5 and had total clicks greater than 1352 had the greatest pass percentage of 96.14 whereas only 3.4% ended up failing.
• Of the students who scored less than 73.5 in any of the assessments and with sum clicks less than 1352, 8.16% ended up failing the course.

FUTURE WORK

The scope of this project will be extended to do back test of the model and implement the successful validation results to identify students at risk, applicable to online learning websites such as Coursera, and Udacity.

REFERENCES

• Kuzilek, J., Hlosta, M., Zdrahal, Z. Open University Learning Analytics Dataset. Data Literacy For Learning Analytics Workshop at Learning Analytics and Knowledge (LAK16)
• Decision Tree Models in Data Mining -Matthew J. Liberatore ,Thomas Coghlan

ACKNOWLEDGEMENTS

• We thank Dr.Goutam Chakraborty, Professor, Department of Marketing, and founder of SAS and OSU Data Mining Certificate Program, Oklahoma State University for his constant guidance throughout the research.
CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Vivek Doijode
Oklahoma State University
Email: vivek.doijode@okstate.edu
Vivek Doijode is a graduate student currently pursuing Master of Science degree in Business Analytics at the Spears School of Business, Oklahoma State University. Vivek has five years of professional experience working for Cognizant Technology Solutions as a developer and quality assurance analyst in healthcare and cards and payment domains.

Neha Singh
Oklahoma State University
Email: neha.singh12@okstate.edu
Neha Singh is a graduate student currently pursuing Masters in Business Analytics at the Spears School of Business, Oklahoma State University.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.