ABSTRACT

This paper compares different solutions to a data transpose puzzle presented to the SAS User Group at the US Census Bureau (CenSAS). The presented solutions ranged from a SAS 101 multi-step solution to an advanced solution utilizing not widely known techniques yielding 85% run time savings!

INTRODUCTION

While working with the International Data Base (IDB) data at the US Census Bureau, I needed to find a way to transpose a wide horizontal table with 101 numeric columns and two rows per group, into a thinner table with 101 rows per group and new column representing the aggregation of two columns per row.

<table>
<thead>
<tr>
<th>scheme</th>
<th>regno</th>
<th>CTY</th>
<th>YR</th>
<th>SEX</th>
<th>MAXAGE</th>
<th>P000</th>
<th>P001</th>
<th>P002</th>
<th>P003</th>
<th>P004</th>
<th>....</th>
<th>....</th>
<th>....</th>
<th>P100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1981</td>
<td>2</td>
<td>100</td>
<td>553</td>
<td>559</td>
<td>540</td>
<td>516</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1981</td>
<td>3</td>
<td>100</td>
<td>529</td>
<td>536</td>
<td>517</td>
<td>494</td>
<td>472</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1982</td>
<td>2</td>
<td>97</td>
<td>549</td>
<td>551</td>
<td>558</td>
<td>539</td>
<td>516</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1982</td>
<td>3</td>
<td>100</td>
<td>561</td>
<td>528</td>
<td>536</td>
<td>517</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1983</td>
<td>2</td>
<td>97</td>
<td>569</td>
<td>547</td>
<td>550</td>
<td>559</td>
<td>539</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1983</td>
<td>3</td>
<td>100</td>
<td>582</td>
<td>559</td>
<td>528</td>
<td>536</td>
<td>517</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1984</td>
<td>2</td>
<td>98</td>
<td>585</td>
<td>566</td>
<td>547</td>
<td>549</td>
<td>559</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1984</td>
<td>3</td>
<td>100</td>
<td>600</td>
<td>580</td>
<td>559</td>
<td>527</td>
<td>536</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1985</td>
<td>2</td>
<td>99</td>
<td>587</td>
<td>577</td>
<td>562</td>
<td>542</td>
<td>545</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1985</td>
<td>3</td>
<td>100</td>
<td>603</td>
<td>598</td>
<td>578</td>
<td>557</td>
<td>526</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AA</td>
<td>1986</td>
<td>2</td>
<td>100</td>
<td>577</td>
<td>580</td>
<td>571</td>
<td>556</td>
<td>536</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Figure 1: Original IDB Birth Rate table

Original data characteristics:
- **Sorted By:** Scheme, regno, cty, yr, sex
- There are 101 age variables (P000 – P100)
- Each Combination of Scheme, regno, cty, yr has a row for **Male** (Sex=2) and a row for **Female** (Sex=3)
- 240,616 observations

Resulting data table should have
- **Male & Female** Records transposed
- **Both** Column is calculated by summing Male & Female numbers
- **popAge** is 0-100
- 12+ Millions observation ((240,616/2) * 101)
Figure 2: Desired Transposed Birth Rate table

It was very important to come up with a solution that has the least amount of data reads and the fastest run time.

Once I developed my solution, I wanted to validate it and see if there could be a better solution. That's when I reached out to the SAS users group at the US Census Bureau (CenSAS), and posted it as a Data Transpose Puzzle. I got two helping solutions with different levels of complexity, and approach.
SOLUTION 1
This solution was contributed by a Branch Chief at the Census. It consisted of 3 steps (Data Step, Proc Sort, Data Step).

%let g_srcDsName = censas.idb194;

data b (keep = scheme regno cty yr popage pop);
 set &g_srcDsName;
 array popagea(101) 8 p000-p100;
 do i = 1 to 101;
 popage = i - 1;
 if sex = '2' then pop = popagea{i};
 else if sex = '3' then pop = popagea{i};
 output;
 end;
run;

proc sort data=b;
 by scheme regno cty yr popage;
run;

data c (drop = pop);
 set b;
 by scheme regno cty yr popage;
 retain male female;
 if first.popage then male = pop;
 if last.popage then do;
 female = pop;
 both = male + female;
 output;
 end;
run;

Pros:
- Clear & Simple
- Easy to follow
- Adoptable by levels of skills

Cons:
- Ignored data characteristics (Sorted by)
- Multiple data reads
- Intermediate table
- Typical SAS 101 approach
- Suitable for teaching but not for Production deployment
SOLUTION 2

This solution was contributed by a SAS on-site Technical Advisor at the Census Bureau. It consisted of 2 steps (Proc Transpose, Proc SQL).

%let g_srcDsName = censas.idb194;

Proc transpose data=&g_srcDsName(drop=maxage sex)
 out=WORK.alattartest2(rename= (sex_1=Male
 sex_2=Female))
 name=Popagetem
 prefix=sex_;
 by scheme regno CTY YR;
run;

Proc sql;
 create table final as
 select scheme ,regno ,CTY ,YR
 ,substr(Popagetem,2,4) as Popage
 ,Male ,Female ,sum(Male+Female) as both
 from alattartest2;
quit;

Pros:
- Utilized data characteristics (Sorted by)
- Easy to follow
- Mixing Procs & SQL

Cons:
- Multiple data reads
- Proc Transpose performs multiple internal data reads
- Intermediate table
SOLUTION 3

This is the solution I had developed prior to ask for input from the SAS users group. It consisted of a single step (Data Step).

```sas
%let g_srcDsName = censas.idb194;

DATA WORK.idb194_transposed (KEEP=scheme regno cty yr PopAge male female both);
  ARRAY p P000-P100;
  ARRAY MP MP000-MP100;
  ARRAY FP FP000-FP100;
  LENGTH  pFirstPos $20 init_rb8_str $808;
  RETAIN MP: FP: init_rb8_str;
  if (_n_=1) then
    do;
      pFirstPos = ADDRLONG(p000);
      init_rb8_str = PEEKCLONG(ADDRLONG(p000));
    end;

  SET &g_srcDsName;
  BY   scheme regno cty yr;

  LENGTH   Popage 4 male female both 8;
  LABEL   PopAge = 'Population at Age'
           male   = 'Male Population'
           female = 'Female Population'
           both   = 'Both sexes Population';

  /* Find the destination address */
  if (sex=2) then   call POKELONG(PEEKCLONG(ADDRLONG(p000)),ADDRLONG(mp000),808);
  else   call POKELONG(PEEKCLONG(ADDRLONG(p000)),ADDRLONG(fp000),808);

  IF (last.yr) THEN
    DO i=1 to dim(p);
      popAge = i-1;
      male   = mp[i];
      female = fp[i];
      both   = Sum(male,female);
      OUTPUT;
    END;
  RUN;
```
Pros:
- Utilized data characteristics (Sorted by)
- Single data read
- Single Output – No Intermediate table(s)

Cons:
- Uses unfamiliar yet very powerful functions
- Requires advanced skills level

RUN TIMES COMPARISON
In order to have a fair and comprehensive comparison, I used the same two data sets with all three solutions on the same SAS platform. The table below illustrates the differences in their run times.

<table>
<thead>
<tr>
<th>Table Sizes</th>
<th>Solution 1 3 Steps mm:ss.ss</th>
<th>Solution 2 2 Steps mm:ss.ss</th>
<th>Solution 3 1 Step mm:ss.ss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>run-time</td>
<td>run-time</td>
<td>run-time</td>
</tr>
<tr>
<td>Sample Data (2,310 records)</td>
<td>00:00.36</td>
<td>00:00.26</td>
<td>27.78%</td>
</tr>
<tr>
<td></td>
<td>% of S1</td>
<td>% of S1</td>
<td>% of S2</td>
</tr>
<tr>
<td>Full Data (240,616 records)</td>
<td>00:28.71</td>
<td>00:23.80</td>
<td>17.10%</td>
</tr>
<tr>
<td></td>
<td>% of S1</td>
<td>% of S2</td>
<td>% of S2</td>
</tr>
</tbody>
</table>

Table 1: Solutions run times and percent of improvement

CONCLUSION
Some of the unwieldy known features of the SAS® programming language can offer more elegant and efficient solutions to data manipulation problems.

Whether you are a SAS programmer with many years of experience or a novice user who is responsible for maintaining legacy programs, implementing updated approaches can allow you to streamline your SAS applications, expedite the development and debugging process, and minimize future maintenance of the code.

Investigating and researching alternative approaches and solutions is a worthwhile investment for any SAS programmer, regardless of their level of experience.
REFERENCES

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ahmed Al-Attar
AnA Data Warehousing Consulting, LLC.
McLean, VA 22101
Cell Phone: 703-477-7972
E-mail: ahmed.al-attar@anadwc.com
Web: www.anadwc.com

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.