Handling Numeric Representation SAS® Errors Caused by
Simple Floating-Point Arithmetic Computation
Fuad J. Foty, U.S. Census Bureau, Washington, DC

ABSTRACT

Every SAS® programmer knows that an 8-byte maximum length numeric datatype imposes a machine specific limit on the numbers and their corresponding computations. To be exact, SAS® uses a 64-bit floating-point representation to store those numbers. At the Census Bureau, we collect and process survey specific data from start to finish. The data first is sampled, collected, edited, and then weighted using certain algorithms. One of the more complicated algorithms involves the weighting procedure of survey data where replicate weights and replicate factors go through a great deal of numerical computations to produce the output weights that everyone waits for. The values of those variables and factors result in very large positive or negative numbers due to heavy computations and even just simple calculations. Knowing how those numbers are represented and stored on a particular machine, gives the programmer a better understanding of ways to deal with any given algorithms or specifications. Rounding the values of the stored data is one way to control the numbers and the logic to correct certain obvious errors that are due to bit truncation. In this paper, I will go through a comprehensive explanation of how the floating-point numeric number system is represented on our machines and will shed light on ways to handle numeric datatype errors in general.

DISCLAIMER

Any views expressed are those of the author and not necessarily those of the U.S. Census Bureau.

INTRODUCTION

Hardware limitation on computers is the main cause of why we do not represent numeric numbers exactly as we know them. No matter what hardware configuration machine you are using, there will only be a finite amount of numbers that this machine can represent and handle. We all know that the real number system that we learned in math classes growing up is an infinite set. This and other infinite numeric sets cannot be represented fully on any machine regardless of its size or scope. Today, we have to use the current hardware configuration available to us and the specific finite numbers that we are allowed to be stored on those machines to represent as many of those infinite real-number systems. As a SAS® programmer, with over twenty-five years of experience programming in the SAS® language, I encountered many real work examples that involved heavy computations that produced gigantic output data sets that one typically does not spend the needed time to make sure the computations output results are within the certain acceptable threshold. The paper will start by introducing the basic definitions and assumptions about the floating-point number system. It is followed by a detailed definition of what the real problem is, followed by many examples and diagrams that will explain the scope and magnitude of the problem and how to deal with the numeric representation error that is caused by the floating-point representation on our machines.
Note: because of the differences in hardware limitations and operating systems, the examples that I am using in this paper will work on a Linux/Unix Platform. If you are using my examples on a different platform or computer system, your output results may vary.

BASIC DEFINITIONS AND ASSUMPTIONS

- All SAS® numbers, integer or real, are represented as **double-precision (64 bits)** floating-point of the host computer. Floating-point representation is one method that computers use to store numeric values and the SAS® System uses this method for all numeric variables and all computed mathematical operations.

- Precision, significant digits, loss of significance, and Magnitude, are properties used to define a numeric value that is being stored. **Precision** is used to define the accuracy with which a number can be represented on the given computer. **Significant digits** is referred to a measure of the correctness of the numeric value that is being used where an upper limit is determined by the precision of the representation. Because of this upper limit, there will be a **Loss of significance**, which reduces the number of significant digits in a numeric value. The **Magnitude** of this numeric value would be a measure of quantity that is expressed as a multiple of the base number system.

- The Floating-point numbers are usually written using **scientific notations** showing the mantissa and the exponent of those number as shown below:

 \[
 1.2345 = \underbrace{12345}_{\text{mantissa}} \times 10^{4} \]

- IEEE is the Institute of Electrical and Electronics Engineers who are responsible for setting the standard of the binary floating-point arithmetic. This standard is called the IEEE 754-2008 that specifies the interchange and arithmetic formats and methods for binary and decimal floating-point arithmetic in computer programming environments. Implementing a floating-point system using this standard will be noticed by users in software, hardware or both. The results are determined by the values of the input data, sequence of operations, and the destination formats, that are entirely under the control of the user.

- **Single-precision** floating-point representation uses 32 bits to store numeric values while the **Double precision** uses 64 bits to store the same numeric values. There are 8 bits in 1 byte, so 32 bits represent 4 bytes while 64 bits equal 8 bytes. Below is a diagram, which shows the single and double precision distribution of bits among the components of any given numeric representation. Those components are the **Sign**, **Exponent** and **Mantissa** of any numeric floating-point representation.
IEEE Floating-Point Format

<table>
<thead>
<tr>
<th>Single</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits</td>
<td>11 bits</td>
<td>52 bits</td>
</tr>
</tbody>
</table>

\[
X = (-1)^s (1 + \text{Fraction}) \times 2^{\text{Exponent} - \text{Bias}}
\]

Exponent: excess representation: actual exponent + Bias
- Ensures exponent is unsigned
- Single precision: Bias=127
- Double precision: Bias=1023

- SAS uses 64 bits double precision floating-point representation. The **Sign** bit indicates whether the number is positive or negative. Zero (0) indicates the number is positive while one (1) indicates that it is negative. The **exponent** is represented as an **unsigned 11-bit binary value**. This representation is called a **biased** representation because, in order to evaluate it, you must subtract 1023. As a result, normal double-precision values have a range of \(\approx \pm 1.7976931348623157 \times 10^{308} \). The values closest to zero are \(\pm 2 \approx 10^{-308} \).

- The **mantissa** is stored in the last fifty-two bits of the 64-bit floating-point number. The mantissa is sometimes referred to as the fraction or significand. The **first bit** of the mantissa is always set to one. This bit is not stored and is called the **hidden bit**. Each successive bit in the mantissa represents a successively smaller fraction of two.

- The IEEE 754 double-precision binary floating-point format used by SAS on Windows, Linux, and UNIX platforms can be represented by the following formula:

\[
N = (-1 \times \text{sign}) \times (2^{\text{exponent} - 1023} (1 + b_1 + b_2 + b_3 + b_4 + \cdots + b_{52}))
\]

- The power of two to the **Exponent** minus 1023 is probably the only confusing number to calculate and comprehend. Let us look at say the number 1023 in base 10 versus 1023 in base 2. As you can see from the below diagram. There are 11 bits that will hold the exponent part of the numeric floating-point number. Each of the 11 bit starting from the right most bit is evaluated 2 to the power of zero (0) and added 2 to the power of one (1) and so forth until you reach the eleventh (11th) bit in the exponent. All of that is done to evaluate the exponent followed by a subtraction of 1023 from it and then taking that number as the power of two (2). This calculation is cumbersome and not intuitive. Below shows 1023 base 10 is stored in the 11 bit exponent field of the 64 bit numeric storage double precision system.

\[
(0111111111)_{2} = (0 + 2^{10} + 2^{9} + 2^{8} + 2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0})_{2} = (1023)_{10}
\]

DEFINING THE PROBLEM

The problem starts with the numeric precision and representation of numbers on our current computers. We know that SAS uses floating-point representation as defined above. When writing a SAS program that compares any two numbers with each other, we compare them as equal numbers and that is where the problem starts.
Consider the decimal representation values of “0.1” and “0.3”. The following two tables represent the SAS program code and its corresponding output listing. The SAS code below is from Clarke Thacher’s elegant Why .1+.1 Might Not Equal .2 paper modified slightly to print certain numbers in question. It demonstrates the structure of the floating-point representation. It uses SAS BINARY64 format to produce the bit representation of any SAS numeric value.

```
data numbers;
  keep num sign exponent mantissa;
  length bits $ 64 sign $ 1 mantissa $ 52;
  input num @@;
  bits = put(num, binarv64.);
  sign = substr(bits, 1, 1);
  exponent = input(substr(bits, 2, 11), binary12.) - 1023;
  mantissa = substr(bits, 13, 52);
  format num best19.;
cards;
  0.1
  0.3
;
proc print noobs;
  var num sign exponent mantissa;
run;
```

Now let us take a look at the output of the above program:

<table>
<thead>
<tr>
<th>num</th>
<th>sign</th>
<th>exponent</th>
<th>mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
<td>-4</td>
<td>100110011001100110011001100110011001100110011001</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
<td>-2</td>
<td>00110011001100110011001100110011001100110011</td>
</tr>
</tbody>
</table>

Notice that the mantissa binary numbers are repeating. The machine simply does not represent either number equally as we know them. Therefore, if we add up “0.1” ten times, the actual sum of those ten numbers must not equal to 1. Similarly, if we subtract or add a “0.3” to any other number, the resulting calculation is not going to be equal as we know it in our mathematics class.

In fact, the fundamental mathematical laws known as the associative law, “(x + y) + z = x + (y + z)”, is now NOT TRUE when we use floating-point representation. The reason for that is the Loss of Significance in the digits associated with storing the three number (x,y,and z).

USING REAL-LIFE SURVEY REPLICATE WEIGHTING FACTORS EXAMPLE

The survey weighting operation at the U.S. Census Bureau is an extensive process that requires enormous computation applied to various variables and factors. The algorithm is a theoretical approach that uses computers to get as close as possible to the real weight that we are seeking. As we discussed earlier, we are dealing with a finite machine and a finite number of bits to store all of the variable values and the factor values to do the computation that is needed to produce the approximate result.
In the following table, I took ten (10) real random weighting factors and examined their mantissa values as I tried to apply different SAS format options to influence the input reading and storing of those numbers to see how we lose significant digits during the computation. The variable of interest is WGT_F which is a weighting factor that has up to 14 significant digits. I am using the same program that was used above to read and print the BINARY64 values of those numbers.

Here are the results of the above program which shows the 52-bit mantissa binary display:

<table>
<thead>
<tr>
<th>WGT_F</th>
<th>sign</th>
<th>exponent</th>
<th>mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.4733398932871</td>
<td>0</td>
<td>5</td>
<td>10100011 100100101100110011011010000110001111011010101</td>
</tr>
<tr>
<td>99.3425472645333</td>
<td>0</td>
<td>6</td>
<td>1000101010111110110010101101011001000001011110</td>
</tr>
<tr>
<td>86.734833475419</td>
<td>0</td>
<td>6</td>
<td>010110101110000011110000101110100001101101111</td>
</tr>
<tr>
<td>91.314286832256</td>
<td>0</td>
<td>6</td>
<td>011011011000011101000110100001011100110111110</td>
</tr>
<tr>
<td>43.3674167377095</td>
<td>0</td>
<td>5</td>
<td>010111011110000111110000101110101110001111111</td>
</tr>
<tr>
<td>154.23273026116</td>
<td>0</td>
<td>7</td>
<td>001101001111011001010000110011011101101001010</td>
</tr>
<tr>
<td>73.7246084541062</td>
<td>0</td>
<td>6</td>
<td>0010011011001011111111110000100110001011010100</td>
</tr>
<tr>
<td>344.053471017549</td>
<td>0</td>
<td>8</td>
<td>0101100000011010110000110011011110101100010010</td>
</tr>
<tr>
<td>35.3422365038066</td>
<td>0</td>
<td>5</td>
<td>0001101011111001110110011110110111101101000110</td>
</tr>
<tr>
<td>51.1794663184596</td>
<td>0</td>
<td>5</td>
<td>1001100111011111010010000110100010001111011110</td>
</tr>
</tbody>
</table>

```data weights;
  keep WGT_F sign exponent mantissa;
  length bits $ 64 sign $ 1 mantissa $ 52;
  input WGT_F @@;
  bits = put(WGT_F,binary64.);
  sign = substr(bits,1,1);
  exponent=input(substr(bits,2,11),binary12.-1023);
  mantissa = substr(bits,13,52);
  format WGT_F best19.;
cards;
  52.4733398932871
  99.3425472645333
  86.734833475419
  91.314286832256
  43.3674167377095
  154.23273026116
  73.7246084541062
  344.053471017549
  35.3422365038066
  51.1794663184596;
  proc print noobs;
    var WGT_F sign exponent mantissa;
  run;```
Notice how the mantissa values differ as you go through the eight and a half bytes that are used to store mantissa of the variable WGT_F. Now, let’s modify the above program by inserting the following round statement after the input of WGT_F from cards.

“\texttt{WGT\_F = round(WGT\_F, 0.001);}”

The above statement will round WGT_F to 3 decimal places and produces the following output:

<table>
<thead>
<tr>
<th>WGT_F</th>
<th>sign</th>
<th>exponent</th>
<th>mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.473 Orig</td>
<td>0</td>
<td>5</td>
<td>101000111100100010110100001110010111000000100001110</td>
</tr>
<tr>
<td>99.343</td>
<td>0</td>
<td>6</td>
<td>10011101010111110110110010110000111001011100011100101</td>
</tr>
<tr>
<td>86.735</td>
<td>0</td>
<td>6</td>
<td>01011010111100001010001111010111000010100111011011101</td>
</tr>
<tr>
<td>91.314</td>
<td>0</td>
<td>6</td>
<td>011011010000001100010011011100010101101110001110010</td>
</tr>
<tr>
<td>43.367</td>
<td>0</td>
<td>5</td>
<td>0101101111011101101100011001011110000111100101</td>
</tr>
<tr>
<td>154.233</td>
<td>0</td>
<td>7</td>
<td>0011010001110111010110111000110100011111111011110</td>
</tr>
<tr>
<td>73.725</td>
<td>0</td>
<td>6</td>
<td>00100110110011001100110011001100110011001100110011001</td>
</tr>
<tr>
<td>344.053</td>
<td>0</td>
<td>8</td>
<td>01011100000001101100100010110000010100010100011000000010</td>
</tr>
<tr>
<td>35.342</td>
<td>0</td>
<td>5</td>
<td>00011010101110001101010011111111011100111111110111101101</td>
</tr>
<tr>
<td>51.179</td>
<td>0</td>
<td>5</td>
<td>100110010101101110001100101011001100110011001100110</td>
</tr>
</tbody>
</table>

If we increase the significant digits of the same number using the ROUND function. Here is what we get:

<table>
<thead>
<tr>
<th>WGT_F</th>
<th>sign</th>
<th>exponent</th>
<th>mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.473398932871</td>
<td>0</td>
<td>5</td>
<td>101000111100100010110100001110010111000000100001110110001110101</td>
</tr>
<tr>
<td>52.473</td>
<td>0</td>
<td>5</td>
<td>101000111100100010110100001110010111000000100001110110001110101</td>
</tr>
<tr>
<td>52.47334</td>
<td>0</td>
<td>5</td>
<td>101000111100100010110100001110010111000000100001110110001110101</td>
</tr>
<tr>
<td>52.47334</td>
<td>0</td>
<td>5</td>
<td>101000111100100010110100001110010111000000100001110110001110101</td>
</tr>
</tbody>
</table>
| 52.473339999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
ABSOLUTE AND RELATIVE ERROR FUZZING MACROS

By now, you should know that using the EQUAL sign to compare two values is not the right thing to do because those numbers are affected by representation errors. In our case, ALMOST EQUAL is really what we are looking for. We can easily achieve that by using a macro that compares two numbers that would be less than some small values called the FUZZ.

There are two macros to consider. One using absolute error called EQFUZZ_AE and another utilizing relative error EQFUZZ_RE. Below is the code to those two macros:

<table>
<thead>
<tr>
<th>Absolute Error Fuzz Macro</th>
<th>Relative Error Fuzz Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>%macro eqfuzz_ae(v1, v2, fuzz=1e-12);</td>
<td>%macro eqfuzz_re(v1, v2, fuzz=1e-12);</td>
</tr>
<tr>
<td>abs(&amp;v1 - &amp;v2) &lt; &amp;fuzz %mend;</td>
<td>abs((&amp;v1 - &amp;v2)/&amp;v1) &lt; &amp;fuzz %mend;</td>
</tr>
</tbody>
</table>

Here is the storage representation of fuzz:

<table>
<thead>
<tr>
<th>fuzz</th>
<th>sign</th>
<th>exponent</th>
<th>mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E-12</td>
<td>0</td>
<td>-40</td>
<td>0001100101111001100100000011011111010100010001</td>
</tr>
</tbody>
</table>

As you can see, fuzz limit is a very small value. So, when we compare the Absolute or Relative error to that fuzz value, we are not equal but almost equal in comparison.

Let us now sum up the values of “0.3” ten (10) times. Theoretically, the sum should add up to three (3). Consider the following SAS code:

```sas
%macro eqfuzz_re(v1, v2, fuzz=1e-12);
 abs((&v1 - &v2)/&v1) < &fuzz
%mend;

data _null_
 Sum=0;
 do i = 1 to 10;
 Sum = Sum + 0.3;
 end;
 Tot=3;
 if Sum eq Tot then put 'Sum EQUAL Tot';
 else if %eqfuzz_re(Sum,Tot) then put 'Sum CLOSE TO Tot';
 else put 'Sum NOT CLOSE TO Tot';
run;
```
The above code uses the relative error FUZZ macro `%eqfuzz_re` to compare `Sum` to `Tot`. Executing the above program, produces a log with the message “`
Sum CLOSE TO Tot`” printed as shown in the following log output:

```sas
216 %macro eqfuzz_re(v1, v2, fuzz=1e-12);
217 abs((&v1 - &v2)/&v1) < &fuzz
218 %mend;
219
220 data _null_
221 Sum=0;
222 do i = 1 to 10;
223 Sum = Sum + 0.3;
224 end;
225 Tot=3;
226 if Sum eq Tot then put 'Sum EQUAL Tot';
227 else if %eqfuzz_re(Sum,Tot) then put 'Sum CLOSE TO Tot';
228 else put 'Sum NOT CLOSE TO Tot';
229 run;
```

You can also use macro `%eqfuzz_ae` to compare an absolute error fuzz value of 1E-12. All you have to do is replace the macro in the above code with the absolute error fuzz macro. Also, you may want to change the fuzz value from 1E-12 to a smaller value depending on the machine you are working with.

**WHAT ABOUT INEGER AND SAS LENGTH STATEMENT**

Consider the LENGTH 4 statement which allows 4 bytes for storage of those integers. The maximum number that can be stored in 4 BYTES is **2,097,152** using a PC or a Unix/Linux machine. Below an example code that shows a 4 bytes storage versus 5 bytes. The difference between **2097152** and **2097153** is in byte 5. If we limit it to only 4 bytes then both numbers would equal each other on the machine. To show this, take a look at the following SAS program and it’s output log.

```sas
data ONE;
 length A1 A2 4;
 length B1 B2 5;
 A1 = 2097152;
 A2 = 2097153;
 B1 = 2097152;
 B2 = 2097153;
run;
```

```sas
data two;
 set ONE;
 put A1=22.16;
 put A2=binary64.;
 put B1=22.16;
 put B2=binary64.;
run;
```
Notice A2 was initially assigned a value of 2097153 in data set ONE and in data set TWO it became 2097152 because the 5th byte was not used in the 4 byte LENGTH statement in data set ONE resulting of a truncation of a significant digit that would have made the two number different instead of equal. When SAS initially stored A1 and A2, it used 4 bytes. Additionally, SAS used the full 8-byte representation of numbers. When A1 and A2 were stored as LENGTH 4, then bytes 5 through 8 are zero-filled. Data set ONE is stored, A1 and A2 are stored with 4 bytes each. In DATA step TWO, they are expanded to 8 bytes with the last 4 bytes zero-filled. So, you must be careful when using a LENGTH statement in SAS. The following table shows the biggest possible integer that can be stored using LENGTH statement 3 through 8. If you do not use a LENGTH statement in your code, it defaults to 8 bytes which is the safest and recommended option if you do not know the limitations.

<table>
<thead>
<tr>
<th>LENGTH STATEMENT</th>
<th>BIGGEST POSSIBLE INTEGER (PC/Unix/Linux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8,192</td>
</tr>
<tr>
<td>4</td>
<td>2,097,152</td>
</tr>
<tr>
<td>5</td>
<td>536,870,912</td>
</tr>
<tr>
<td>6</td>
<td>137,438,953,472</td>
</tr>
<tr>
<td>7</td>
<td>35,184,372,088,832</td>
</tr>
<tr>
<td>8</td>
<td>9,007,199,254,740,992</td>
</tr>
</tbody>
</table>

THE ORDER OF YOUR DATASET MATTERS IN COMPUTATION

Let us now modify Clarke Thacher’s elegant example about the sum of positive and negative powers of two (Paper 275-2011) to the sum of positive and negative of the first 100 powers of three (3). The following macro %create_data creates any 100 positive and negative powers of n where n is an integer greater than 1.
%macro create_data(Set,n);
data &set bin_nums;
pow&n = 1;
do i = 1 to 100;
pow&n = pow&n * &n;
val = pow&n; rand = uniform(0); output;
val = -pow&n; rand = uniform(0); output;
end;
file print notitles;
put ' ';
Put " ";
Put "POWERS OF &n";
Put 'RANGE: ' val e16. ' to ' pow&n e16.;
put ' ' val = binary64.;
put pow&n = binary64.
run;
%mend;

Below is the output SAS data set of those positive and negative powers of n=3. Notice, val is alternating between positive and negative values of the powers of 3. That is intentional because we want to add them up to get zero sum. The variable pow3 is the absolute value of the variable val, and rand is just a random number between 0 and 1 that is calculated by the SAS uniform function. If we sort the dataset by rand, then it is in Random order. If we sort the dataset by val, then we are summing the smallest val numbers to the largest val numbers. We will sort the bottom data set four different ways and see which way works best.

DATASET: POSITIVE AND NEGATIVE POWERS OF 3

Note: Only the first 10 and last 10 positive and negative powers of 3 are displayed below to show the range of values from smallest to largest.
To do that, we need the following code:

``` SAS
%macro sum_set(Set,val,key,msg);
proc sort data=&set;by &key;run;
data _null_;
 set &set end=done;
 format sum best16.;
 retain sum;
 if (n = 1) then sum =0;
 sum = sum + &val;
 file print notitles;
 if (done) then do;
 put "SORTED by &key" @30 "SUM=" SUM e16. " <--- &msg" ;
 put sum = binary64.;
 end;
run;
%mend;

%macro main;
%do i = 3 %to 3;
 %let pow=power&i;
 %create_data (&pow,&i);
 /* Random order */
 %sum_set(&pow,val,rand,Random order);
 /* order by val */
 %sum_set(&pow,val,val,VAL Order);
 /* order by reverse val */
 %sum_set(&pow,val,descending val,Reverse VAL Order);
 /* order by absolute value */
 %sum_set(&pow,val,POW&i, Absolute value);
%end;
%mend;
%main;
```

Here is the output listing for the above `%create_data` macro code using powers of 3 is below:

``` SAS
POWERS OF 3
RANGE: -5.153775207E+47 to 5.153775207E+47

val=1100100111101011010010011001100111010010110011100110110111011010
pow3=010010011101011010010011001100111010010110011100110110111011010
```

Notice that the difference goes from negative to positive. A print of BINARY64 function of the rage reveals the sign bit which indicates whether it is positive or negative. We are talking about very small numbers here.
Now, take a look at the listing of the macro %sum_set using the different SORT ORDERS:

<table>
<thead>
<tr>
<th>Sort Order</th>
<th>SUM</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorted by rand</td>
<td>(5.316703994\times10^{31})</td>
<td>Random order</td>
</tr>
<tr>
<td></td>
<td>(01001101001)</td>
<td></td>
</tr>
<tr>
<td>Sorted by val</td>
<td>(-8.112963841\times10^{31})</td>
<td>VAL order</td>
</tr>
<tr>
<td></td>
<td>(110001101001)</td>
<td></td>
</tr>
<tr>
<td>Sorted by descending val</td>
<td>(8.112963841\times10^{31})</td>
<td>Reverse VAL Order</td>
</tr>
<tr>
<td></td>
<td>(01001101001)</td>
<td></td>
</tr>
<tr>
<td>Sorted by POW3</td>
<td>(0.000000000\times10^{0})</td>
<td>Absolute Value</td>
</tr>
<tr>
<td></td>
<td>(00000000000)</td>
<td></td>
</tr>
</tbody>
</table>

The above output listing shows that if you take the absolute value of all of the numbers, you will get closer to the true value. The sum must equal zero because we are taking the first 100 positive and negative powers of three and adding them together. Theoretically, we should get zero. But look at what we got with the different sort orders.

Precision was compromised by the addition process in all of the above sort orders except POW3. In many additions, the difference in the exponents was greater the number of bits in our mantissa, and significant bits were shifted away. We got the expected answer only when the observations were ordered in a way that every positive observation was followed by a negative observation, resulting in an intermediate value of 0. Strange as it might seem, all of the results that we got should be considered within the range of acceptable answers. Because we had 200 observations in the range of \(\pm 3^{100}\), any variation whose absolute value is less than \(200 \times 3^{100-52(5.6\times10^{16})}\) should not be considered significant.
CONCLUSION

As SAS programmers, it is important to know and understand the difference between the numbers that you see on your display monitor as opposed to those numbers that are stored on your machine. The stored values are the main reason why we have the floating-point representation errors. In addition to those numeric representation error, we also have SAS rounding errors and other errors that are not mentioned in this paper that are caused by computations and other processes and procedures. This is something that needs an open eye on. Understanding the problem and knowing your data, helps one keep the issue of numeric representation errors under control. The error can occur at any step of your computation process or storage. Using certain techniques that you learned in this paper can give the programmer the vision of what to do in order to contain those errors so that they are manageable and fall within certain acceptable boundaries.

REFERENCES


ACKNOWLEDGMENTS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

CONTACT INFORMATION

Your comments and questions are welcomed and encouraged. Contact the author at:

Fuad J Foty
U.S. Census Bureau
4600 Silver Hill Road
Washington, DC 20233
301-763-5476
fuad.j.foty@census.gov

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *