ABSTRACT

Data profiling is an essential task for data management, data warehousing, and exploring SAS® datasets. TDWI (http://tdwi.org) extends the usual definition of data profiling to include data exploration. This paper presents two SAS programs – Data_Explorer and Data_Profiler – that implement the TDWI definition.

These SAS programs are low-cost, free solutions for data exploration and data profiling. Data_Explorer searches for all SAS datasets, and gathers essential dataset and file attributes into a single report. Data_Profiler summarizes the values of any SAS dataset in a generic manner, and eliminates the need for custom SQL queries to learn what the data looks like. Because the profiler uses an efficient two-pass algorithm, a brute force approach, that includes everything plus the kitchen sink, can consume fewer resources than custom SQL queries. Profiler results are more complete because you get complete categorical details for all the columns of very big datasets.

These programs have been used in banking and state government, and should be useful in the pharmaceutical industry for validating SAS datasets and managing data content and changes in large data repositories.

INTRODUCTION

Terse bullet points and annotated figures emphasize that this is a visual presentation of technical information. The two data profiling programs are complex, but the visual results are easily understood by anyone. Therefore programming details are deferred until the second half of this paper.

Results from the SAS programs are explained by a concrete example in the related poster (PO-01, SESUG 2012). Each section of the poster is discussed to show how you may use the profile reports to find and fix real issues. Analysts, report writers, and data experts may picture solutions as they see this information. With the end in sight and the anticipation of solving difficult problems, they may be more interested in seeing how these programs work.

Both SAS programs use Base SAS and SAS/Connect. You can remove the dependency on SAS/Connect by rewriting the programs as local SAS programs. Data_Explorer is written for SAS on UNIX, but it can easily be adapted to other systems.

OVERVIEW

• Results First, Then the Technical Details
 • Limitations of Metadata
 • Seeing is Believing
• Seeing the Visual Results
• The complete poster, suitable for printing
• Motivation for Data Profiling
• Definition of Data Profiling
• Features of a Good Data Profiler
 • Meeting the needs of data profiling according to TDWI
 • Four Data Profiling Practice Areas
 • Ten Best Practices in Data Profiling
• Overview of the SAS Programs
• Reports and Datasets
• Programming Details
• References and Contact Information
RESULTS FIRST, THEN THE TECHNICAL DETAILS

• Limitations of Metadata
 • Metadata information is hidden behind complicated GUIs.
 • Many choices come from metadata searches, and they all look good.
 • Descriptions may not have enough information about all columns.
 • Descriptions may not be clear and concise, so the truth gets lost in the overwhelming details.
 • Column descriptions may not show the complete set of values in the data.
 • Column descriptions may not be current.
 • Subject matter experts (SMEs) may be required to make a good decision.
 • SMEs may be hard to find, not available, or unknown.

• Seeing is Believing
 • When metadata is lacking, not authoritative, or not explained very well, you view the data and run custom queries to learn about the data.
 • Seeing is believing, and it may be your only recourse when you lack good metadata descriptions.
 • Even when metadata is very good, you still view the data if it's new to you.
 • Seeing is believing, even when you have good metadata.

SEEING THE VISUAL RESULTS – FEATURES AND APPLICATIONS

Figures 1 – 6 explain each part of the poster (PO-01, SESUG 2012). Figure 1 shows the features of the programs, and some possible uses of the information. The complete poster is in Figure 7, followed by four images that can be printed on letter-sized pages and taped together to create the poster.

The following excerpt shows the upper left corner of the poster. You can see that the profiler report is in Excel, and various columns have been hidden to explore counts of non-missing values for selected columns.

Figure 1. Seeing the Visual Results – Features and Applications
SEEING THE VISUAL RESULTS – DATASET PROFILER

The poster is highlighted and annotated with arrows and boxes, as you can see from this excerpt from the upper right corner. Starting with the boxes on the bottom left, columns A and B of the profile report are explained (Dataset Profiler – Using hidden columns and filtered variables):

- Column A contains column names, which are repeated for each distinct value of a column.
- Column B shows the distinct values for each column, including missing values.
- The other columns show statistics for all numeric columns when Column A has that value in Column B.
 - Almost any SAS statistic can be calculated here. Refer to Figure 3.
 - Only “reportable” columns are shown in Column A.
 - Reportable variables have no more than 300 distinct values, which you can adjust in the program.

The profile report is overlaid on lower right with an enhanced content report on the dataset (Columns Report for Profiled Variables). Notice the rich set of statistics for each variable.

- The Stats column in the report is Y if it is a reportable variable, and N otherwise.
- All columns in the report are defined in Figure 4.
- Note the highlighted relationship between the App_Date variable and the App_Date_N column in the Dataset Profiler report. The 4839 non-missing values of App_Date are either Y or N in the Dataset Profiler report.
- Note that analytical groups of variables are defined by their Count values. Six variables have 4839 non-missing values, and cred_refi is close at 3412. These variables can be statistically analyzed as a group. Other variables have no missing values, and they represent another group of variables for related analysis.

Figure 2. Seeing the Visual Results – Features and Applications
SEEING THE VISUAL RESULTS – PROFILER STATISTICS

A wide variety of statistics are available for the profiler report, which uses Proc Means. Statistics may be selected by modifying the Dataset_Profiler program. The example report shows the N statistic, the number of non-missing values of a variable.

Figure 3. Seeing the Visual Results – Profiler Statistics
Definitions for columns of the *Columns Report for Profiled Variables* are shown in the visual below.

- The upper box shows the column definitions for the report.
- The lower box describes the two analytical groupings in the report, based upon similar counts of non-missing values in two groups of columns.

Figure 4. Seeing the Visual Results – Column Report Definitions
SEEING THE VISUAL RESULTS – DATA QUALITY ANALYSIS

The dataset explorer report can be filtered to display anomalies in column attributes. In this example, LTV is filtered in the upper panel, and results are shown in the lower panel. LTV should be numeric, but variables in some tables are defined as character (see the purple box in the image below). This inconsistency can cause program failure or inaccurate results. Also note that the format of LTV is not uniform, and that may affect the report view of the data.

Note that the dataset name and directory are displayed. This data can be used to create a program to make corrections to the data.

Figure 5. Seeing the Visual Results – Data Quality Analysis
SEEING THE VISUAL RESULTS – EXPLORER COLUMNS AND PERMISSIONS

The dataset explorer is an enhanced Proc Contents report that lists the owner, group, and permissions for all SAS datasets. These UNIX attributes can cause problems for programs or users that need to access datasets or create new ones.

Notice that very many datasets have permissions that are too loose. This caused problems when datasets were deleted and recreated with 20 observations by a novice SAS user. The report would show Owner names so you can locate the errant user and give them more training on SAS.

Other datasets had permissions that did not allow group members to recreate the dataset. This caused program failure when the marketing campaign was run by another person.

In all these cases, you can locate the owner by the Owner column, find their email in /etc/passwd, and notify them about the problem with permissions.

Figure 6. Seeing the Visual Results – Explorer Columns and Permissions

SEEING THE VISUAL RESULTS – THE COMPLETE POSTER

The complete poster appears on the next page. The visual resolution of the complete poster is too coarse to create a good print. Therefore, four pages of higher resolution images are included for printing and taping together to create a better version of the complete poster.
Here is the complete poster on a single page. The next 4 pages contain images suitable for printing and taping.

Figure 7. Seeing the Visual Results – The Complete Poster
Using Dictionary Tables to Profile SAS® Datasets

Features

- Discover all SAS datasets in a directory tree.
- Detailed and searchable contents of all columns.
- Detailed profiles of any SAS dataset.
- Shows which columns are suitable for reporting.
- Values and statistics for every reportable column.
- Complete data knowledge with no custom SQL.
- Efficient two-pass algorithm.
- Free!

Application

- Data exploration
- Data quality
- Change control
- Report planning
- Seeing the data
- Knowing the data
- Sharing data

Dataset Profiler -- Using hidden columns and filtered variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values</th>
<th>App Date N</th>
<th>Cancelled Date N</th>
<th>CLTV N</th>
<th>complete date N</th>
<th>cred refi N</th>
<th>CLTV refi N</th>
<th>DTI N</th>
<th>FICO in N</th>
<th>N late Date N</th>
<th>complete refi N</th>
</tr>
</thead>
<tbody>
<tr>
<td>letter_type</td>
<td>Market Rate - w Payment Example</td>
<td>291</td>
<td>186</td>
<td>291</td>
<td>5.919</td>
<td>5.919</td>
<td>264</td>
<td>291</td>
<td>291</td>
<td>5.919</td>
<td>5.919</td>
</tr>
<tr>
<td>letter_type</td>
<td>Market Rate - w/o Payment Example</td>
<td>2,855</td>
<td>1,846</td>
<td>2,965</td>
<td>55.645</td>
<td>56.645</td>
<td>2.695</td>
<td>2.965</td>
<td>2.965</td>
<td>55.645</td>
<td>55.645</td>
</tr>
<tr>
<td>letter_type</td>
<td>Market Rate w Payment Example</td>
<td>880</td>
<td>984</td>
<td>880</td>
<td>11.688</td>
<td>11.688</td>
<td>565</td>
<td>565</td>
<td>565</td>
<td>11.688</td>
<td>11.688</td>
</tr>
<tr>
<td>letter_type</td>
<td>Reverse Mortgage</td>
<td>39</td>
<td>29</td>
<td>39</td>
<td>1.849</td>
<td>1.849</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>1.849</td>
<td>1.849</td>
</tr>
<tr>
<td>control_flag</td>
<td>Y</td>
<td>181</td>
<td>52</td>
<td>181</td>
<td>91.090</td>
<td>91.090</td>
<td>55</td>
<td>55</td>
<td>181</td>
<td>91.090</td>
<td>91.090</td>
</tr>
<tr>
<td>Loan_Status</td>
<td>Active</td>
<td>1,033</td>
<td>-</td>
<td>1,033</td>
<td>1.033</td>
<td>1.033</td>
<td>565</td>
<td>565</td>
<td>565</td>
<td>1.033</td>
<td>1.033</td>
</tr>
<tr>
<td>Loan_Status</td>
<td>Denied</td>
<td>1,282</td>
<td>1,282</td>
<td>1,282</td>
<td>1.282</td>
<td>1.282</td>
<td>409</td>
<td>409</td>
<td>409</td>
<td>1.282</td>
<td>1.282</td>
</tr>
<tr>
<td>Status_Desc</td>
<td>Complete</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Status_Desc</td>
<td>Application incomplete</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Status_Desc</td>
<td>Application Withdrawn</td>
<td>854</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Columns Report for Profile

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Filled</th>
<th>NMISS</th>
<th>PCT</th>
<th>Unique PCT</th>
<th>Unique All</th>
<th>Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>App Date</td>
<td>4832</td>
<td>5.03%</td>
<td>91.48%</td>
<td>94.57%</td>
<td>244</td>
<td>5.04%</td>
<td>9.25%</td>
</tr>
</tbody>
</table>
to Profile SAS® Datasets

Data profiling is the process of examining the data available in an existing data source (e.g., a database or file) and collecting statistics and information about that data. The purpose of these statistics may be to find out whether existing data can easily be used for other purposes, provide metrics relevant to data quality and standards, assess the risk involved in integrating data for new applications, and assess whether metadata accurately describes the actual values in the source database.

Dataset Profiler has two reports, which are to the left. The first report is filtered for statistic N, the non-missing variable counts, which represent counts for classes of reporting variables. This shows whether sufficient data exists for each value of a reporting variable, and may be used to pick suitable variables for analysis.

The second report shows SAS metadata with counts and percents of unique, missing, and non-missing variables. Stats shows reporting variables when it equals Y. Note the highlighted box for App_Date, showing the connection between numbers in the two reports.
Using Dictionary Tables to Profile SAS® Datasets, continued

Dataset Explorer – Information on all datasets

The owner name can be looked up in select password, and we can contact users about any data issues.

Dataset permissions may reveal possible issues:
- Permissions (read-only) do not allow group members to write to this dataset. Programs may fail when they are not run by user ad1631.
- Other permission (execute) allows everyone unlimited access to the datasets. Inexperienced users may accidently delete important information.
MOTIVATION FOR DATA PROFILING

• Initial motivation → Solve the immediate problem
 1. Discover what SAS datasets are available.
 2. Describe the data structure and columns in the datasets.
 3. Show cases where data profiling meets specific needs.
 4. Provide a brief design for the generic data profiler program, which eventually became the Dataset_Profiler program.

• Current motivation → Create a data profiling solution
 1. The generic data profiler² was created to profile of any SAS dataset.
 2. Describe the data structure and columns, and show all category values for each reporting variable³, plus statistics for each column.
 3. Instead of meeting specific needs for data profiling, show that these two programs⁴ have all the features of a data profiler. Matching the definition of a data profiler would classify the programs as a good data profiling solution.
 4. Research was done to find a good definition of data profiling. A vendor-neutral definition⁵ was got from TDWI (The Data Warehousing Institute).

DEFINITION OF DATA PROFILING

• From Philip Russom, Raising the Bar for Data Profiling:

 Data profiling is the process of examining the data available in an existing data source (e.g., a database or file) and collecting statistics and information about that data. The purpose of these statistics may be to find out whether existing data can easily be used for other purposes, provide metrics relevant to data quality and standards, assess the risk involved in integrating data for new applications, and assess whether metadata accurately describes the actual values in the source database.

<table>
<thead>
<tr>
<th>Practice Area</th>
<th>Description</th>
<th>Enabler</th>
<th>Required Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Profiling</td>
<td>Create a data inventory with profiles</td>
<td>Dataset_Profiler.sas</td>
<td>A dataset name</td>
</tr>
<tr>
<td>Data Discovery</td>
<td>Discover new and unknown data sources</td>
<td>Dataset_Explorer.sas</td>
<td>Directory names and/or Directory tree names</td>
</tr>
<tr>
<td>Data Monitoring</td>
<td>Re-profile and discover what has changed</td>
<td>Dataset_Explorer.sas</td>
<td>Two Explorer or Profile datasets, plus a program that compares two SAS datasets</td>
</tr>
<tr>
<td>Collaborative Profiling</td>
<td>Business people add meaning to the columns</td>
<td>Dataset_Explorer.sas</td>
<td>Collect comments about the values of the reporting variables</td>
</tr>
</tbody>
</table>

Figure 8. Four Practice Areas of Data Profiling

¹ “Using Dictionary Tables to Explore SAS® Datasets”
² Dataset_Profiler.sas
³ A reporting variable is defined as having its Number of Unique values < 300, and its Percent of Unique values <= 10%.
⁴ Dataset_Explorer.sas and Dataset_Profiler.sas
TEN BEST PRACTICES IN DATA PROFILING

<table>
<thead>
<tr>
<th>Best Practices</th>
<th>Programs</th>
<th>Capabilities</th>
</tr>
</thead>
</table>
| 1. Just do it! | Dataset_Profiler | - Easy to do; only requires a dataset location.
| 2. Profile data thoroughly | | - Efficient 2-pass algorithm is suitable for big data.
| 3. Produce more through data profiles | | - Statistics, owner, permissions, and actual values for reporting columns.
| | Dataset_Profiler | | |
| 4. Discover and profile new data sources | Dataset_Explorer | - Searches directory trees to discover new data.
| 5. Re-profile data as it evolves | Dataset_Profiler | - Compare Explorer datasets to find SAS timestamp changes, or data and structure changes.
| 6. Re-profile data daily via data monitoring | | - Automate the comparisons.
| | | - Profile new datasets, and re-profile changed datasets.
| | | |
| 7. Profile data across multiple IT systems | Dataset_Profiler | - Most databases are accessible by SAS/ACCESS
| 8. Collaborate through data profiles | Dataset_Explorer | - Profiler and Explorer programs can be adapted to databases by using the Libname access method and SAS In-Database technology.
| | | - “Seeing” the actual values of reporting variables encourages collaboration, since seeing is believing.
| | | |
| 9. Map data as you discover and profile it | No | - Foreign keys are difficult to discover without rigid data naming conventions. SAS Web Report Studio maps foreign keys under the right conditions.
| | | |
| 10. Support many practices with data profiling, discovery, and monitoring | Maybe | - Integration with some DI and DQ products may be possible as more databases and appliances support SAS In-database technology.
| | | - Integration with BI and DW is less likely to occur soon
| | | - SAS BI Platform integrates DI, DQ, BI, and DW.

OVERVIEW OF THE SAS PROGRAMS

• Dataset_Explorer.sas finds all SAS programs in any number of directory trees.
 – Returns Excel and CSV files of all tables, directory, permissions, ownership, modification date, and attributes of every column.
 – Excel data be filtered to discover suitable datasets and foreign keys.
 – A file of SAS libname definitions facilitates deeper data explorations.
 – For details, see Using Dictionary Tables to Explore SAS Datasets.

• Dataset_Profiler.sas analyzes uniqueness, missing values, and miscoded values, and gives detailed statistics if a column is eligible as a report variable.
 – Two-pass algorithm, which is efficient for big data.
 – Provides an enhanced contents listing, with counts of missing, non-missing, and unique values, plus percentage of same. The “Stats” column decides whether a column is suitable for reporting, which is defined by the heuristic, Unique values < 300 and % Uniqueness <= 10%.
 – Provides a detailed list of every report variable with all of its possible values, plus statistics related to every variable in the dataset.
 • Excel report includes the variable name, values, and very many statistics
 • Suggested usage – Hide rows and columns that you don’t want to view. Then filter to see variables and statistics of interest. This process was used in a production environment to determine whether a meaningful report could be produced from the dataset. In other words, did it have enough useful data to create a good analysis?

REPORTS AND DATASETS – THE CONTENTS REPORT

<table>
<thead>
<tr>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Name of the variable</td>
</tr>
<tr>
<td>Count</td>
<td>Count of non-missing values</td>
</tr>
<tr>
<td>Filled</td>
<td>% of rows that are filled with data</td>
</tr>
<tr>
<td>NMiss</td>
<td>Number of missing or blank values</td>
</tr>
<tr>
<td>Miss_Pct</td>
<td>% of rows with missing values</td>
</tr>
<tr>
<td>Unique</td>
<td>Number of unique data values</td>
</tr>
<tr>
<td>Unique_Pct</td>
<td>Unique / Filled formatted as % of Unique values filled</td>
</tr>
<tr>
<td>Unique_Pct_All</td>
<td>Unique / Count formatted as % of Unique values overall</td>
</tr>
<tr>
<td>Stats</td>
<td>‘Y’ if this can be a class value or a report variable; in other words, it’s a discrete variable, and not a key or a continuous variable</td>
</tr>
<tr>
<td>Contents Data</td>
<td>SAS metadata values for data type, length, Format, InFormat, Label, and varnum</td>
</tr>
</tbody>
</table>
REPORTS AND DATASETS – THE STATISTICS REPORT

<table>
<thead>
<tr>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Name of the variable</td>
</tr>
<tr>
<td>Values</td>
<td>Distinct values of Variable</td>
</tr>
<tr>
<td>Count</td>
<td># of rows that have that Value</td>
</tr>
<tr>
<td>Stats</td>
<td>Various statistics from Proc Means – see the list below for an example</td>
</tr>
<tr>
<td>Column #</td>
<td>Where this data comes from in the original dataset, in case you have a whole lot of columns and the data is hard to locate</td>
</tr>
</tbody>
</table>

PARTIAL COLUMN LISTING FROM A STATISTICS REPORT CREATED BY DATASET_PROFILER.SAS

contact_date_Max contact_date_Mean contact_date_Min contact_date_N contact_date_Nmiss contact_date_StdDev
cr_Max cr_Mean cr_Min cr_N cr_NMiss cr_StdDev
ecg_id_Max ecg_id_Mean ecg_id_Min ecg_id_N ecg_id_NMiss ecg_id_StdDev
emb_Max emb_Mean emb_Min emb_N emb_NMiss emb_StdDev
First_Prin_Bal_Max First_Prin_Bal_Mean First_Prin_Bal_Min
First_Prin_Bal_N First_Prin_Bal_NMiss First_Prin_Bal_StdDev
fuba_nbr_Max fuba_nbr_Mean fuba_nbr_Min fuba_nbr_N fuba_nbr_NMiss fuba_nbr_StdDev
Last_changed_date_Max Last_changed_date_Mean Last_changed_date_Min Last_changed_date_N
Last_changed_date_NMiss Last_changed_date_StdDev
loan_no_Max loan_no_Mean loan_no_Min loan_no_N loan_no_NMiss loan_no_StdDev
ltv_Max ltv_Mean ltv_Min ltv_N ltv_NMiss ltv_StdDev
PROGRAMMING DETAILS FOR DATASET EXPLORER

1. The program is well commented. Please read it for further details.
2. \%let's at the top of the program define the data locations and directories to search for SAS datasets.
3. Create a UNIX filename pipe to find all SAS datasets. Then read and process the results into a SAS dataset.
4. Create a libname for each directory that contains any SAS dataset.
5. Using the SAS Dictionary tables, get metadata from all datasets in your set of libnames.
6. Merge the UNIX information from step 3 with the SAS information from step 5.
7. Create the Excel reports.
8. Five SAS work datasets are downloaded to the PC, in case you want to do further analysis.

PROGRAMMING DETAILS FOR DATASET PROFILER

1. The program is well commented. Please read it for further details.
2. \%let's at the top of the program define the data locations and the SAS dataset to analyze.
3. Count missing, non-missing, and unique values for the dataset.
4. Transpose the dataset from step 3, which is a single row.
5. Process the transposed dataset to define all the variables for the “Column Report for Profiled Variables”. Define reporting variables based upon number of unique values and % unique. Set Stats = “Y” for reporting variables.
6. Define macro variables to create the Proc Means analysis that will profile the dataset.
7. Run the Proc Means.
8. Process the Means output dataset. In simple terms, the large and sparse matrix of Means types is “squished” so that each value of a reporting variable is shown with column statistics for all numeric columns in the dataset.
9. Output the two Excel reports.
10. Filter the profile report to show what may be relevant data for your analysis. The text filters in Excel are very useful for searching and providing meaningful results.
11. The Proc Means output dataset is downloaded to SAS Work, in case you want to do further analysis.

PROGRAMS ARE AVAILABLE ONLINE

See the References section for the PowerPoint presentation with embedded SAS code. Source code is available in the Credit Card section of the proceedings for IFSUG 2012:

http://www.ifsug.org/2012-proceedings
CONCLUSION

This paper has described a good data profiling solution, based upon the definition from TDWI. The visual elements showed what is possible with a data profiler based upon SAS data dictionary tables, and those results should speak for themselves. Program details were briefly described to assist those who decide to read the well commented code.

REFERENCES

CONTACT INFORMATION

I am interested in how this technology performs in the wild. Please feel free to share your experiences.

Contact the author at:
Phillip Julian
Bank of America
Charlotte, NC
(469) 256-8463
julianp@acm.org
member.acm.org/~julianp

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.