MV_META: A SAS® Macro for Multivariate Meta-Analysis
Julie A. Gloudemans, University of South Florida, Tampa, FL
Corina M. Owens, University of South Florida, Tampa, FL
Jeffrey D. Kromrey, University of South Florida, Tampa, FL

ABSTRACT
Meta-analysis of multiple outcomes and multiple treatments from a single study require more sophisticated models than the typical meta-analytic models that assume independence of effect sizes. Three different approaches have been suggested to accommodate dependent effect sizes: a multivariate multi-level approach (Kalaian & Raudenbush, 1996), a robust variance estimation strategy (Hedges, Tipton, & Johnson, 2010), and the traditional univariate random effects approach (Hedges & Olkin, 1985). This paper presents a SAS macro that calculates multivariate meta-analysis confidence intervals, mean effect sizes, and estimated effect size variances for each outcome variable given a sample of effect sizes and sample sizes. This paper includes a demonstration of the macro, sample inputs and output, and an examination of the accuracy and precision of the three approaches based on a simulation study.

Keywords: DEPENDENT EFFECT SIZES, RANDOM EFFECTS, CONFIDENCE INTERVALS, BASE SAS®, SAS/STAT®, SAS/IML®

INTRODUCTION
Meta-analysis provides tools for the synthesis of research, specifically the use of quantitative procedures to statistically combine the results of studies (Cooper & Hedges, 2009). Meta-analyses are typically conducted with the assumption that the effects sizes are from independent studies, and consequently are statistically independent. However, many studies do not meet the assumption of independence. Studies can use multiple treatments compared to a common control group resulting in correlations between effect sizes. Additionally studies can have multiple outcome variables of interest. The traditional approaches of meta-analysis used to statistically combine and analyze effect sizes are fixed and random effect models. Each of these approaches assumes independence of studies.

FIXED AND RANDOM EFFECTS MODELS FOR META-ANALYSIS
Models for meta-analysis may be roughly divided into those based upon fixed effects and those based upon random effects (Field, 2001; Hedges, 1994; Hedges & Vevea, 1998; Raudenbush, 1994). A fixed effects model assumes a common effect size across all studies (Shadish & Haddock, 2009). In other words, in a fixed effects model it is assumed that one true effect size exists in the population, with variability being only due to sampling error. In contrast, under a random effects model one would not assume that one population effect size exists but rather a distribution of population effect sizes exists. Therefore differences in effect sizes are based on underlying population differences and are not just due to sampling error. In addition, when no random variation exists or the variance component is zero the random effects model simplifies to the fixed effects model.

Because sample effect sizes obtained for a meta-analysis typically present different magnitudes of estimation error, weighted means and variances are used to obtain the estimates of population effect sizes and confidence bands. For fixed effects models, these weights are given by

\[w_i = \frac{1}{\sigma^2_i} \]

where \(\sigma^2_i \) = the estimation variance of the \(i^{th} \) effect size.

In contrast, for random effects models, the weights used are given by

\[w_i = \frac{1}{\sigma^2_i + \tau^2} \]

where \(\tau^2 = \sigma^2_p \) = the population variance in effect sizes.

Because \(\tau^2 \) is not known, it must be estimated from the observed sample effect sizes (see Biggerstaff & Tweedie, 1997; Friedman, 2000; Hedges & Olkin, 1985).
MULTIVARIATE APPROACHES FOR META-ANALYSIS

Other approaches have been proposed to account for dependency between effect sizes. Two methods are a multivariate multi-level approach (Kalaian & Raudenbush, 1996) and robust variance estimation strategy (Hedges, Tipton, and Johnson, 2010). Kalaian and Raudenbush (1996) used the multi-level approach to estimate two levels: the within-study (or the effect sizes from each study) and the between-study (or the effect sizes across the different studies). The combined model, as stated by Kalaian and Raudenbush, is:

\[
d_i = X_i\beta + \epsilon_i,
\]

where \(d_i\) is the effect size estimates, \(X_i\) is an indicator of estimating a true effect size, \(W_i\) represents model covariates, and \(\epsilon_i\) and \(\epsilon_i\) represent errors. Variances and covariances are estimated using restricted maximum likelihood (REML). The true effect sizes are estimated using empirical Bayes.

Hedges, Tipton, and Johnson (2010) described an approach that allows for dependent effect sizes without having the within-study covariance structure by using a robust variance estimate. The model uses a vector (\(T\)) that represents a sample of estimates for \(m\) clusters.

\[
\begin{bmatrix}
T_1 \\
T_2 \\
\vdots \\
T_m
\end{bmatrix}
= \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_m
\end{bmatrix} \begin{bmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_m
\end{bmatrix} + \begin{bmatrix}
\epsilon_1 \\
\epsilon_2 \\
\vdots \\
\epsilon_m
\end{bmatrix}
\]

Where \(X\) is a vector of matrices that are the value of the covariates for each effect size, \(\epsilon\) is a vector of residuals, and \(\beta\) is a vector of unknown regression coefficients that is estimated by weighted least-squares as

\[
b = \left(\sum_{j=1}^{m} X_j W_j X_j \right)^{-1} \left(\sum_{j=1}^{m} X_j W_j T_j \right)
\]

with \(W_j\) representing a diagonal vector of weights. The standard error of \(b_j\) when \(m\) is small is determined by:

\[
s^{b_j} = \sqrt{\frac{V_{bb_j}}{m}}
\]

where \(V_{bb_j}\) are the elements of the vector \(V^R\):

\[
V^R = \left(\sum_{j=1}^{m} X_j W_j X_j \right)^{-1} \left(\sum_{j=1}^{m} X_j W_j \epsilon_j \epsilon_j X_j W_j \right) \left(\sum_{j=1}^{m} X_j W_j X_j \right)^{-1}
\]

MACRO MV_META

The macro MV_META was designed to estimate mean effect sizes, confidence intervals around each mean effect size, and estimated effect size variance for each outcome variable using the three approaches described. The macro allows meta-analysts to easily apply the most recent approaches to meta-analysis with dependent effect sizes. The macro was written in SAS/IML, SAS/STAT, and BASE SAS Software. The macro can accommodate any number of studies and any number of outcome variables. In addition, missing data among the sample of effect sizes (i.e., not all studies in the sample include all of the outcome variables) is accommodated.

Inputs to the macro include the name of the SAS dataset containing the effect size information and the names of the SAS variables containing the effect sizes, the sample sizes, the outcome variable name, and the study identifier. The dataset is transferred to SAS/IML for computation of the traditional univariate random effects analysis and the robust variance analysis suggested by Hedges, Tipton, and Johnson (2010). The MIXED procedure from SAS/STAT is used for the multi-level approach suggested by Kalaian and Raudenbush (1996). The meta-analytic results are summarized in three tables using a file statement in a SAS/IML. The macro MV_META is copied below.
%macro MV_Meta(data = _LAST_, ID = IDN, ES = d1 d2 d3 d4 d5, NN = nt1 nc1 nt2 nc2 nt3 nc3 nt4 nc4 nt5 nc5);

 /*---*/
 /* Macro arguments are: */
 /* DATA = SAS dataset containing the effect size data */
 /* ID = Study ID number */
 /* ES = Effect sizes included in the dataset */
 /* NN = Group (treatment and control) sample sizes for each effect size included in the data set */
 /*---*/

 proc iml;
 * +---+
 Subroutine to calculate weighted mean effect sizes,
 standard errors, and confidence intervals for mean of both DVs under
 either fixed effects or random effects models.
 Inputs to the subroutine are
 d1_vec - column vector of effect sizes (d1)
 var_d1 - column vector of estimation errors for d1(FIXED EFFECTS variance)
 tau2_d1 - scalar estimate of RANDOM EFFECTS variance for d1(set to zero for fixed effects analysis)
 Outputs are
 d1_mean = weighted mean d1 value Mean ES of d1
 d1_resum_wt = scalar, sum of the d1 weights
 d1_SE = standard error of d1
 d1upper95, d1lower95 = endpoints of 95% CI
 * +---+

 start mean_d(d1_vec, var_d1, tau2_d1, d1_mean, d1_resum_wt, d1_SE, d1upper95, d1lower95);

 * calculate RANDOM EFFECTS weighted mean effect size;
 k1 = nrow(d1_vec);
 d1_mean = 0;
 d1_resum_wt = 0;
 do i = 1 to k1;
 if d1_vec[i,1] ^= . then do;
 d1_mean = d1_mean + d1_vec[i,1]/(var_d1[i,1]+tau2_d1);
 d1_resum_wt = d1_resum_wt + (var_d1[i,1]+tau2_d1)##-1;
 end;
 end;
 d1_mean = d1_mean/d1_resum_wt; *****Random Effects Mean D1 ES;
 d1_SE = SQRT(d1_resum_wt##-1);
 d1upper95 = d1_mean + 1.96#d1_SE;
 d1lower95 = d1_mean - 1.96#d1_SE;
 finish;
 * +---+

 start calcq(d1_vec, n_vec, qq_d1, d1_plus, d1_prob_qq1, var_d1);

 * calculate variance for each effect size;
 d1_k = nrow(d1_vec);
 var_d1 = J(d1_k, 1, 0);
 do i = 1 to d1_k;
 if d1_vec[i,1] ^= . then do;
 var_d1[i,1] = ((n_vec[i,1]+n_vec[i,2])/(n_vec[i,1]#n_vec[i,2])) +
 end;

 proc iml;
 * +---+
 Subroutine to calculate the Q test
 of homogeneity.
 Inputs to the subroutine are
 d1_vec - column vector of effect sizes (d1)
 n_vec - matrix (k X 2) of sample sizes
 corresponding to each effect size
 Outputs are
 d1_QQ = the obtained value of Q for d1
 d1_plus = weighted mean d1 value
 d1_prob_qq1 = chi-square probability associated with QQ
 var_d1 = column vector of variances of d1 effect sizes
 * +---+

 start calcq(d1_vec, n_vec, qq_d1, d1_plus, d1_prob_qq1, var_d1);

\[
\left(\frac{(d_1\text{vec}[i,1]^{#2})}{(2\#(n\text{vec}[i,1]+n\text{vec}[i,2]))}\right);
\]

end;

* calculate weighted mean effect size;
 d1_plus = 0;
 d1_sum_wt = 0;
 do i = 1 to d1_k;
 if d1_vec[i,1] ^= . then do;
 d1_plus = d1_plus + d1_vec[i,1]/var_d1[i,1];
 d1_sum_wt = d1_sum_wt + var_d1[i,1]##-1;
 end;
 end;
 d1_plus = d1_plus/d1_sum_wt;

* calculate Q for d1;
 QQ_d1 = 0;
 k_count = 0;
 do i = 1 to d1_k;
 if d1_vec[i,1] ^= . then do;
 QQ_d1 = QQ_d1 + ((d1_vec[i,1] - d1_plus)##2/var_d1[i,1]);
 k_count = k_count + 1;
 end;
 end;
 d1_prob_qq1 = 1 - PROBCHI(QQ_d1,k_count-1);
finish;

Subroutine for Hedges Robust method

Inputs to the subroutine are
 d_matrix
 d_matrix has column 1 for study ID
 n_matrix

Outputs are
 mean_ES
 lower_CI
 upper_CI
 tau2

+---+
start hedges (d_matrix, N_matrix, mean_ES, SE_ES, lower_CI, upper_CI, tau2);
 k = NROW(d_matrix);
 j = NCOL(d_matrix);
 W = J(k,j-1,0); * Matrix of fixed effects weights;
 do i = 1 to k;
 do dv = 2 to j;
 if d_matrix[i,dv] ^= . then d_matrix[i,dv] = 999;
 end;
 end;
 * Create matrix of fixed effects weights;
 do i = 1 to k;
 do dv = 2 to j;
 if d_matrix[i,dv] ^= 999 then do;
 First_N = (dv - 1) + (dv - 2);
 var_d = ((N_matrix[i,First_N]+N_matrix[i,First_N + 1])/(N_matrix[i,First_N]#N_matrix[i,First_N + 1])) + ((d_matrix[i,dv]##2)/((2#(N_matrix[i,First_N]+N_matrix[i,First_N + 1])));
 W[i,dv-1] = 1/var_d;
 end;
 if d_matrix[i,dv] = 999 then W[i,dv-1] = 0;
 end;
 end;
end;
* Estimate WLS parameters (equation 3):
Xj = J(j-1,j-1,0);
do change = 1 to j-1;
 Xj[change,change] = 1;
 Xj[change,1] = 1;
end;
do i = 1 to k;
 Wj = diag(w[i,]);
 Tj = d_matrix[i,2:j];
 Tj = Tj*;
 if i = 1 then do;
 denom = Xj'*Wj*Xj;
 numer = Xj'*Wj*Tj;
 end;
 if i > 1 then do;
 denom = denom + (Xj'*Wj*Xj);
 numer = numer + (Xj'*Wj*Tj);
 end;
end;
beta = INV(denom)*numer;

* Compute random effects variance (equation 15):
do i = 1 to k;
 Wj = diag(w[i,]);
 Tj = d_matrix[i,2:j];
 Tj = Tj*;
 if i = 1 then do;
 term1 = Tj'*Wj*Tj;
 term2 = Tj'*Wj*Xj;
 term3 = Xj'*Wj*Xj;
 term4 = Xj'*Wj*Tj;
 end;
 if i > 1 then do;
 term1 = term1 + (Tj'*Wj*Tj);
 term2 = term2 + (Tj'*Wj*Xj);
 term3 = term3 + (Xj'*Wj*Xj);
 term4 = term4 + (Xj'*Wj*Tj);
 end;
end;
QE = term1 - (term2*INV(term3)*term4);

Ji = J(j-1,j-1,1);
do i = 1 to k;
 Wj = diag(w[i,]);
 Wij = 0; * scalar value: mean weight;
 n_wt = 0;
do wt = 1 to j-1;
 if W[i,wt] ^= 0 then do;
 wij = wij + W[i,wt];
 n_wt = n_wt + 1;
 end;
end;
wij = wij/n_wt;
Tj = d_matrix[i,2:j];
Tj = Tj*;
if i = 1 then do;
 term1 = Xj'*Wij*Xj;
 term2 = (0.5*Wij)*Xj'*Xj;
 term3 = (0.5*Wij)*(Xj'*Ji*Xj - Xj'*Xj);
 term4 = 2*Wij;
 term5 = Wij*Wij*Xj'*Ji*Xj;
end;
if i > 1 then do;
 term1 = term1 + (Xj * Wj * Xj);
 term2 = term2 + ((0.5 * Wij) * Xj * Xj);
 term3 = term3 + ((0.5 * Wij) * (Xj * Ji - Xj * Xj));
 term4 = term4 + (2 * Wij);
 term5 = term5 + (Wij * Wij * Ji * Xj);
end;
end;
term1 = INV(term1);

do rhoj = 5 to 5;
 rho = rhoj / 10;
 numer = QE - k + TRACE(term1 * term2) + rho * TRACE(term1 * term3);
 denom = term4 - TRACE(term1 * term5);
 tau2 = numer / denom;
end;
if tau2 < 0 then tau2 = 0;

* Redefine weights, including tau2 (equation 13);
omega2 = 0; * variance component from equation 18;
do i = 1 to k;
 do dv = 2 to j;
 if W[i,dv-1] = 0 then do;
 var_d = 1 / W[i,dv-1];
 w[i,dv-1] = 1 / (var_d + tau2 + omega2);
 end;
 end;
end;

* Estimate WLS parameters with RE weights (equation 3);
do i = 1 to k;
 Wj = diag(w[i,]);
 Tj = d_matrix[i,2:j];
 Tj' = Tj;
 if i = 1 then do;
 denom = Xj' * Wj' * Xj;
 numer = Xj' * Wj' * Tj;
 end;
 if i > 1 then do;
 denom = denom + (Xj' * Wj' * Xj);
 numer = numer + (Xj' * Wj' * Tj);
 end;
end;
beta = INV(denom) * numer;

* Estimate robust standard errors (equation 6 and 7);
do i = 1 to k;
 Wj = diag(w[i,]);
 Tj = d_matrix[i,2:j];
 ej = Tj - Xj * beta;
 if i = 1 then do;
 term1 = Xj' * Wj' * Xj;
 term2 = Xj' * Wj' * (ej * ej') * Wj' * Xj;
 end;
 if i > 1 then do;
 term1 = term1 + (Xj' * Wj' * Xj);
 term2 = term2 + (Xj' * Wj' * (ej * ej') * Wj' * Xj);
 end;
end;
VR = INV(term1) * term2 * INV(term1);
* Compute mean effect sizes and 95% CI using t-distribution;
df = k - (j-1);
upperT = TINV(.975, df);
lowerT = TINV(.025, df);
mean_ES = J(j-1,1,0);
SE_ES = J(j-1,1,0);
lower_CI = J(j-1,1,0);
upper_CI = J(j-1,1,0);
do dv = 1 to j-1;
 if dv = 1 then do;
 mean_es[1,1] = beta[1,1];
 SR = SORT((k#VR[1,1])/(k-(j-1)))); *Robust SE;
 SE_ES[1,1] = SR;
 upper_CI[1,1] = mean_es[1,1] + upperT#SR;
 lower_CI[1,1] = mean_es[1,1] + lowerT#SR;
 end;
 if dv > 1 then do;
 mean_es[dv,1] = beta[1,1] + beta[dv,1];
 SR = SORT((k#VRdvdv + 2#VR[1,dv])/(k-(j-1)))); *Robust SE;
 SE_ES[dv,1] = SR;
 upper_CI[dv,1] = mean_es[dv,1] + upperT#SR;
 lower_CI[dv,1] = mean_es[dv,1] + lowerT#SR;
 end;
end;
finish;
* +---+
Transfer data from regular SAS into IML and populate matrices
* +---+;
use &data;
read all var {&ES} into ES_Matrix;
read all var {&NN} into NN_Matrix;
read all var {&ID} into ID_Vector;
d_matrix = ID_Vector||ES_Matrix; * Effect size matrix, augmented with study ID variable;
run hedges (d_matrix,NN_matrix,Hmean_ES,H_SE,Hlower_CI,Hupper_CI,Htau2);
print 'Results from robust variance estimation (RVE) Method';
print Hmean_ES H_SE Hlower_CI Hupper_CI Htau2;
*Regular RE Analysis to Check;
do col = 1 to ncol(ES_Matrix);
 d1_vec = ES_Matrix[,col];
 n_vec = NN_Matrix[2#col-1][NN_Matrix[2#col];
 run calcq(d1_vec,n_vec,d1_qq,d1_plus,d1_prob_qq1,var_d1);
/* Compute estimates of Tau-squared;
 * Estimator #2: Q based REVC Estimate*/
k_count = 0;
Pt1 = 0;
Pt2 = 0;
do i = 1 to NROW(ES_Matrix);
 if d1_vec[i,1] ^= . then do;
 Pt1 = Pt1 + var_d1[i,1]##-1;
 Pt2 = Pt2 + var_d1[i,1]##-2;
 k_count = k_count + 1;
 end;
end;
CC_d1 = Pt1 - (Pt2/Pt1);
Tau2_d1 = (d1_qq - (K_count - 1)) / cc_d1; *****REVC;
if tau2_d1 < 0 then tau2_d1 = 0;
*---
RESULTS FOR RANDOM EFFECTS Method
* compute mean ds and CIs using estimator 2;
run mean_d(d1_vec, var_d1, tau2_d1, d1_mean, d1_resum_wt, d1_SE, d1upper95, d1lower95);
RE_results = RE_results//(d1_mean||d1_se||d1lower95||d1upper95||tau2_d1);
end; * End RE Analysis;
file print;
put @1 'Results from the Random Effects (RE) Method' ///
 @29 'Mean d' @38 'Standard Error' @53 'Lower Limit' @68 'Upper Limit' @83 'Variance' /;
do row = 1 to NROW(RE_results);
 mean = RE_results[row,1];
 SE = RE_results[row,2];
 Low95 = RE_results[row,3];
 Hi95 = RE_results[row,4];
 est_tau = RE_results[row,5];
file print;
 put @28 mean 8.5 @40 SE 8.6 @53 Low95 8.6 @68 Hi95 8.6 @82 est_tau 8.6;
end;

* +---+
Begin Proc Mixed Method

Subroutine effect -- arranges effect sizes and sample sizes for
input into proc mixed. As well as determining the weights
and the number of effects per observation.

Creates a2 with study id, one effect size, the corresponding
sample sizes, type (based on the number of effect sizes per
observation), weights, and number of effect sizes per
observation.
* +---+;
start effect(id_vector, es_matrix, nn_matrix, es, one_n, two_n, type, w, noeffects, studyid);
create a2 var{studyid es one_n two_n type w noeffects};
do row = 1 to nrow (ES_Matrix);
do col = 1 to ncol(ES_Matrix);
 es = ES_Matrix[row,col];
 one_n = NN_Matrix[row,2#col-1];
 two_n = NN_Matrix[row,2#col];
type = col;
 studyid = id_vector[row,1];
w = 1/(((one_n + two_n)/(one_n*two_n)) + ((es**2)/(2*(one_n+two_n))));
 noeffects = ncol(ES_Matrix);
append;
end;
end;
call symput('noeffect',left(char(noeffects)));
finish effect;

* +---+
Subroutine parm -- determine variances and covariances for
provided effect sizes the PARMS STATEMENT in Proc Mixed.
If one or both of the corresponding effect sizes are missing
then it is coded as 0. The file parm2 is created with
observations of covp
* +---+;
start parm (ES_Matrix, NN_Matrix, covp);
create parm2 var{covp};
do i = 1 to nrow(ES_matrix);
do m = 1 to ncol(ES_matrix);
do j = 1 to ncol(ES_matrix);
esize1 = ES_Matrix[i,j];
k = 2^j - 1;
l = 2^j;
one_n1 = NN_Matrix[i,k];
one_n2 = NN_Matrix[i,l];
if m = j then do;
covp = ((one_n1 + one_n2)/(one_n1*one_n2)) + ((esize1**2)/(2*(one_n1+one_n2)));
if covp = . then covp = 0;
append;
end;
if m > j then do;
esize2 = ES_Matrix[i,m];
n = 2^m - 1;
o = 2^m;
two_n1 = NN_Matrix[i,n];
two_n2 = NN_Matrix[i,o];
covp = (1/(one_n2+two_n2)) + ((esize1*esize2)/(2*(one_n1+one_n2+two_n1+two_n2)));
if covp = . then covp = 0;
append;
end;
end;
end;
finish parm;

run effect (id_vector, es_matrix, nn_matrix, es, one_n, two_n, type, w, noeffects, studyid);
run parm (ES_Matrix, NN_Matrix, covp);
quit;
* determines the number of between study variances and covariances needed;
%let j = %EVAL(((&noeffect**2 - &noeffect)/2)+&noeffect);
* +---+
Creates a file (temp) of starting values for between study variances and covariances
* +---+;
Proc IML;
y= {.};
create temp from y[colname={"covp"}];
do i = 1 to &j;
y = .5;
append from y;
end;
Close temp;
* Merges between and within variances and covariances;
data parm3;
set temp parm2;
* organizes variances and covariances;
proc transpose data= parm3 out=parm4 prefix=covp;
var covp;
data parm4;
set parm4 (drop = _name_);
run;

* determines needed number of parameters;
proc sql noprint;
select count(*)
into :noparms
from parm3;
quit;

* makes j the starting point for fixed parameters;
%let j = %EVAL(&j+1);
ODS SELECT NONE;
/* Proc Mixed procedure*/
proc mixed method=REML scoring = 20 cl data= a2 covtest ;
class studyid type;
model es=type/ noint s cl;
random type subject=studyid type=un ;
repeated type subject=studyid
group=studyid type=un;
odds output solutionF = c5
(keep = estimate stderr lower upper);
odds output convergencestatus = c6 (keep = reason status);
parms / pdata=parm4 eqcons= &j to &noparms;
weight w;
run;
odds select all;

PROC IML;
USE c6;
read all var {Reason} into Converge_status;
read all var {Status} into status;
if status = 1 then do;
 file print; put @1 'PROC MIXED did not converge' // @1 converge_status;
end;
if status = 0 then do;
 USE c5;
 READ ALL INTO mix;
 Nmix= NROW(mix);
 Est=mix[,1];
 se =mix[,2];
 up =mix[,4];
 lo =mix[,3];
 Mixed_results = Est || se || lo || up;
 file print;
 put @1 'Results from the Mixed Method' //
 @29 'Mean d' @38 'Standard Error' @53 'Lower Limit' @68 'Upper Limit';
 do row = 1 to nmix;
 mean = Mixed_results[row,1];
 SE = Mixed_results[row,2];
 Low95 = Mixed_results[row,3];
 Hi95 = Mixed_results[row,4];
 file print;
 put @28 mean 10.5 @40 SE 10.6 @53 Low95 10.6 @68 Hi95 10.6;
 end;
end;
run;
%mend MV_meta;

INVOKING THE MACRO
The MV_META macro can be called using:

%mV_Meta (data = <data set name>, ID = <study ID name>, ES = <Name of effect sizes>, NN = <Name of sample sizes - 2 per effect size>); run;

Below is an example dataset that can be used with MV_META and how that example can be called for the macro. The dataset can have multiple Cohen’s D effect sizes per study and requires two sample sizes per effect size. The dataset needs to be organized like the example below such that the first two sample sizes (n1 and n2) correspond to the first effect size (es1) and this pattern follows for each effect size.
data a1;
input studyID es1 es2 es3 n1 n2 n3 n4 n5 n6;
cards;
1 1.45 0.12 -2.12 145 129 145 129 145 129
2 -1.4 2.45 72 129 72 129 72 129
3 1.5 1.1 2.14 71 129 71 129 71 129
4 -1.2 1.17 -2.1 225 193 225 193 225 193
5 0.55 0.93 2.02 192 684 192 684 192 684
; run;
%MV_Meta (data = a1, ID = studyid, ES = es1 es2 es3, NN = n1 n2 n3 n4 n5 n6);
run;

OUTPUT FROM MACRO MV_META
The output is displayed as three tables. The first table is the results from the RVE method. This table includes the mean effect sizes, the standard error for each mean effect size, the 95% confidence interval for each mean effect size, and estimated tau. The second table includes the results from the RE method. This table displays the mean effect sizes and their standard error, 95% confidence interval and variance. The final table is the result of the mixed method including the mean effect sizes and their standard errors and 95% confidence intervals.

COMPARISON OF THE MULTIVARIATE META-ANALYSIS APPROACHES
Four different meta-analytic methods of dealing with dependent effect sizes were examined in a simulation study: a multivariate multi-level (Mixed) approach (Kalaian & Raudenbush, 1996); robust variance estimation (RVE) strategy (Hedges, Tipton, & Johnson, 2010); stochastically dependent effect (SDE) size approach (Gleser & Olkin, 2009); and traditional univariate random effects (RE) approach (Hedges & Olkin, 1985). Three of these methods are part of this macro: Mixed, RVE, and RE. Factors investigated in the simulation study included: number of studies included in the meta-analysis; population mean effect sizes; covariance between effect sizes; within study sample size; and population effect size variance (Owens, Gloudemans, & Kromery, 2011).

All approaches remained relatively unbiased, regardless of condition. All approaches tended to produce biased estimates as the population effect size increased with the worst bias values occurring when the within study sample size was the smallest. The SDE approach produced the narrowest confidence intervals and not surprisingly tended to undercover, regardless of condition. The other three approaches (RVE, RE, and Mixed) produced wider intervals and coverage close to the nominal .95 coverage rate.

Accuracy and precision increased for the RVE, RE, and Mixed approaches as the number of primary studies and within study sample size increased, and as the population effect size decreased. All approaches, with the exception of the SDE approach, produced promising results for meta-analysts with multivariate data. In addition, it is tenable to assume the SDE approach is only appropriate for use with dependent effect size data when the data truly conform to a fixed effects model.

CONCLUSIONS
The macro MV_META was created to calculate three different methods of meta-analyzing data with dependent effect sizes. The simulation study, based on the studied conditions, showed that the three models had similar results. This code has been tested with two and three effect sizes along with missing values. The macro can be used with any meta-analysis that uses dependent effect sizes. This work can be expanded in many ways. For example, the macro can be used to study the effects of missing dependent effect sizes. This was not an included condition of the simulation study. Additionally, this macro only uses Cohen’s D effect size. The code can be adjusted to allow for different types of effect sizes.
REFERENCES

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Julie Gloudemans
1936 Bruce B Downs Blvd #343
Wesley Chapel, FL 33543
E-mail: Julie.gloudemans@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.