Creating Correlated Variable Tables Dynamically
John Barrow, Aref Dajani, U.S. Census Bureau, Suitland, MD

ABSTRACT

Certain survey imputation methods rely on a correlated variable. In this instance, it is advantageous to have a summary of the correlation matrix. During a recent imputation study of the Annual Survey of Local Government Finances, a two column static table was generated containing a column of all variables and a column of their highest correlated variables. To generate this table, PROC SQL and PROC CORR were used as well as macro coding. The table was used together with the %SCAN macro function to impute variables using their highest correlated variable. The power of this macro is that the table is generated dynamically with each imputation implementation. Thus, if variables are added to a survey or study, an updated table will be created without additional effort. The authors present three solutions: one using PROC ODS, one using arrays, and one using macros.

INTRODUCTION

PROC CORR computes the Pearson correlation coefficients for a data set. It has an option BEST=n that is used to return the n highest correlates for all variables. When BEST=6 the OUTPUT window shows the user the five highest correlated variables and the variable itself (denoted Variable). This result is more useful in a data set versus in the OUTPUT window. Also, the results from PROC CORR displayed in the OUTPUT window are different from the results captured in the SAS® data set. Figure 1 shows the PROC CORR results in the OUTPUT window whereas Figure 2 shows the SAS data set results. The task in this paper is to take the results from the OUTPUT window (when Best=6) and place them into a SAS data set, while keeping the process dynamic. The final table should have six columns: one containing all variables followed by five columns containing its five highest correlated covariates in descending order. This paper presents three solutions: arrays, macros, and PROC ODS. The array and macro solutions demonstrate different ways to sort individual columns or rows of a data set. PROC ODS is the most efficient method. It quickly creates data sets from OUTPUT results.
DATA

The data used in this paper were from the 2007 Census of Governments: Finance. These are public data available at the U.S. Census Bureau website. Instructions to obtain the data and create the input data set REPORTED are available in the Appendix. These data are not confidential. Each observation contains State Code, Type of Government, Item Code, Amount, Coefficient of Variation, and Year of Survey. Data for each unit were placed on a single row with Item Code as column names. All other variables were excluded for this paper. The variables of interest have CY_ attached to them. Some examples are CY_19T, CY_19U, CY_A01, and CY_F91. The name of this data set is REPORTED.

<table>
<thead>
<tr>
<th></th>
<th>CY_19T</th>
<th>CY_19U</th>
<th>CY_24T</th>
<th>CY_29U</th>
<th>CY_34T</th>
<th>CY_39U</th>
<th>CY_44T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>511890810</td>
<td>1705373113</td>
<td>83868442</td>
<td>302596268</td>
<td>47447841</td>
<td>180097211</td>
<td>553770734</td>
</tr>
<tr>
<td>2</td>
<td>317964450</td>
<td>541465616</td>
<td>62819873</td>
<td>9899956</td>
<td>32365073</td>
<td>60384769</td>
<td>354657491</td>
</tr>
<tr>
<td>3</td>
<td>193926360</td>
<td>116490747</td>
<td>20396512</td>
<td>15082768</td>
<td>119712442</td>
<td>199113243</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>77504179</td>
<td>168133157</td>
<td>6135786</td>
<td>28827947</td>
<td>5463504</td>
<td>17128679</td>
<td>77529085</td>
</tr>
<tr>
<td>5</td>
<td>76397985</td>
<td>457727150</td>
<td>11670045</td>
<td>65357122</td>
<td>6556145</td>
<td>44843695</td>
<td>81480344</td>
</tr>
<tr>
<td>6</td>
<td>1801709</td>
<td>24903719</td>
<td>144597</td>
<td>3396060</td>
<td>187025</td>
<td>2613102</td>
<td>1793281</td>
</tr>
<tr>
<td>7</td>
<td>38122487</td>
<td>232415386</td>
<td>3098141</td>
<td>45363711</td>
<td>2876094</td>
<td>24177094</td>
<td>38344533</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>281722085</td>
<td>0</td>
<td>61051672</td>
<td>0</td>
<td>30943882</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Partial Input Data Set, REPORTED

DICTIONARY TABLES

To keep the table creation process dynamic, PROC SQL is used. SQL queries the dictionary tables and places the variable names in a macro variable. This eliminates the need to update code if a variable is deleted/added from the data set. Dictionary tables are SAS views created within a session containing metadata regarding libraries, data sets, macros, and external files. This information is located in the SAS view named VCOLUMN which is located in the library SASHELP. From that view, memname specifies the data set being referenced.

```sas
PROC SQL NOPRINT;
    SELECT NAME, NAME, NAME, COUNT(*)
    INTO :varlist SEPARATED BY ' ', :varlistcomma SEPARATED BY ',',
    :varlistquote SEPARATED BY '"', :numvars
    FROM SASHELP.VCOLUMN
    WHERE LIBNAME='PAPER' AND MEMNAME='REPORTED';
QUIT;
```

Figure 3: SAS SQL used to query Dictionary table SAShelp.vcolumn

The macro variable varlist contains all variable names separated by spaces. The macro variable varlistcomma contains all variable names separated by commas, and the macro variable varlistquote contains all variable names separated by quotations. The last two are only used in the array solution.

PROC CORR

PROC CORR computes the Pearson correlation coefficients for REPORTED. NOSIMPLE suppresses printing simple descriptive statistics, NOMISS excludes observations with missing values, and NOPRINT suppresses displayed output. The OUTP= option prints the Pearson correlations to a data set. The use of the macro variable varlist is used here as a text substitution for the list of variables in REPORTED.

```sas
PROC CORR DATA=PAPER.REPORTED NOSIMPLE NOMISS NOPRINT OUTP=PAPER.CORRS (WHERE=(_TYPE_="CORR"));
    VAR &varlist.
RUN;
```

Figure 4: SAS code to generate Correlation matrix
ARRAY SOLUTION

Within a DATA step, the correlation table is placed into an array. This process remains dynamic by using the macro variables &numvars and &varlist to populate the array.

```
ARRAY var {&numvars} &varlist;
ARRAY corrvname {&numvars} $ (&varlistquote);
```

Figure 5: ARRAY Definitions

The SAS code in figure 5 creates arrays named var and corrvname. Each has dimension equal to the value of numvars. The array var is composed of the variables in varlist, while corrvname is populated by the names of those variables from varlistquote. Two arrays are necessary since var contains numeric variables while corrvname contains character. Var is used to sort the correlation coefficients within each row using the LARGEST function. Corrvname is used to assign the appropriate variable name that corresponds to its correlation coefficient.

```
DO z=1 TO &numvars;
   IF (var{z}=LARGEST(2,&varlistcomma)) THEN Best1=corrvname{z};
   IF (var{z}=LARGEST(3,&varlistcomma)) THEN Best2=corrvname{z};
   IF (var{z}=LARGEST(4,&varlistcomma)) THEN Best3=corrvname{z};
   IF (var{z}=LARGEST(5,&varlistcomma)) THEN Best4=corrvname{z};
   IF (var{z}=LARGEST(6,&varlistcomma)) THEN Best5=corrvname{z};
END;
```

Figure 6: SAS code to determine highest five correlates

MACRO SOLUTION

The macro program top5 splits the full correlation table into columns. Each column is placed into a data set entitled COLUMNn where n=1,...,358. Once the columns are in separate data sets they are sorted in descending order. Finally, only the first six observations are kept in each column. These six rows are the variable itself and its highest five correlated variables. The preceding paragraph is executed in a %DO loop as in Figure 7. This requires a macro program.

```
%MACRO top5;
%DO i=1 %TO &numvars;
   DATA COLUMN&i. (KEEP=%SCAN(&varlist.,&i.) _NAME_);
   SET PAPER.CORRS;
   %SCAN(&varlist.,&i.)=ABS(%SCAN(&varlist.,&i.));
   RUN;
   PROC SORT DATA=COLUMN&i.;
   BY DESCENDING %SCAN(&varlist.,&i.);
   RUN;
   DATA COLUMN&i.;
   SET COLUMN&i.;
   IF (_N_ LE 6);
   RUN;
%END;
```

Figure 7: SAS MACRO program top5 (part 1)

There are 358 data sets that contain six observations. Next they are appended into one data set. The appended data sets contain the variables with the next highest correlated in the following row. To create the six column correlation table, the program uses an indicator variable, c. The CEIL function is used to assign the same value to each of these variables. A data step with a MERGE statement creates the desired table, merging by c.
DATA ALLCOLUMNS;
SET %DO i=1 %TO &numvars;
COLUMN&i.
%END;
RUN;

DATA %DO i=0 %TO 5;
CTDATA&i. (KEEP= Best&i. c)
%END;
;
SET ALLCOLUMNS;
;x=MOD(_N_,6)-1;
IF x=-1 THEN x=5;
c=CEIL(_N_/6);
%DO i=0 %TO 5;
IF x=&i. THEN
DO;
Best&i. = _NAME_;
OUTPUT CTDATA&i.;
END;
%END;
RUN;

PROC SORT DATA=CTABMACRO;
BY Variable;
RUN;

PROC DATASETS NOLIST;
DELETE COLUMN:;
QUIT;
%MEND;
%top5;

Figure 8: SAS macro program top5 (part 2)

The six column correlation table is made with a MERGE statement within a DATA step. After creating the correlation table, PROC DATASETS is used to delete the unnecessary n column data sets.

DATA CTABMACRO (RENAME=(Best0=Variable));
MERGE %DO i=0 %TO 5;
CTDATA&i. (KEEP= Best&i. c)
%END;
;
BY c;
DROP c;
RUN;

PROC SORT DATA=CTABMACRO;
BY Variable;
RUN;

PROC DATASETS NOLIST;
DELETE COLUMN:;
QUIT;
%MEND;
%top5;

Figure 9: SAS macro program (part 2)

ODS TRACE SOLUTION

PROC ODS is the most elegant way to solve the problem of creating correlation tables as SAS data sets. When the ODS TRACE statement is submitted, SAS outputs a record of each output object to the log. This information is then used to create a SAS data set from the information displayed in the OUTPUT window. It is necessary to submit the PROC CORR statement before the ODS OUTPUT in order to obtain the Name of the output data set.

Output Added:

Name: PearsonCorr
Label: Pearson Correlations
Template: base.corr.StackedMatrixNC

Figure 10: SAS Log results
Figure 10 shows the Log results after submitting PROC CORR with ODS TRACE=ON. The output object, NAME, (also from Figure 10) is then used with an ODS OUTPUT statement to create a SAS data set containing the results from the procedure. These results are viewable in the OUTPUT window, as shown in Figure 1. Table 2 shows the data set created by the ODS OUTPUT statement. The desired result is a table containing the columns Variable and Best2 through Best6 which is addressed using the KEEP= statement. The full code is listed below in Figure 11.

```
ODS OUTPUT PEARSONCORR=PAPER.CTABODS (KEEP=variable best2-best6
RENAME=(best2=Best1 best3=Best2 best4=Best3 best5=Best4 best6=Best5));

PROC CORR DATA=PAPER.REPORTED NOSIMPLE BEST=6 NOMISS OUTP=CORRS;
   VAR &varlist;
RUN;

ODS LISTING;
ODS TRACE OFF;
```

Figure 11: SAS Code used to generate Figures 7, 8 and Table 2

Table 2: SAS data set showing results of PROC CORR

<table>
<thead>
<tr>
<th>Variable</th>
<th>Best1</th>
<th>Best2</th>
<th>Best3</th>
<th>Best4</th>
<th>Best5</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY_1ST</td>
<td>CY_1ST</td>
<td>CY_44T</td>
<td>CY_W01</td>
<td>CY_34T</td>
<td>CY_24T</td>
<td>CY_E23</td>
<td>1.0000</td>
<td>0.99982</td>
<td>0.99879</td>
<td>0.99428</td>
</tr>
<tr>
<td>CY_19U</td>
<td>CY_19U</td>
<td>CY_49U</td>
<td>CY_39U</td>
<td>CY_39U</td>
<td>CY_39U</td>
<td>CY_19U</td>
<td>0.99680</td>
<td>0.99994</td>
<td>0.99865</td>
<td>0.99717</td>
</tr>
<tr>
<td>CY_24T</td>
<td>CY_34T</td>
<td>CY_44T</td>
<td>CY_F44</td>
<td>CY_W11</td>
<td>CY_T09</td>
<td>CY_W31</td>
<td>1.0000</td>
<td>0.99678</td>
<td>0.99805</td>
<td>0.98888</td>
</tr>
<tr>
<td>CY_39U</td>
<td>CY_39U</td>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_19U</td>
<td>CY_19U</td>
<td>CY_W31</td>
<td>0.99994</td>
<td>0.99994</td>
<td>0.99780</td>
<td>0.99817</td>
</tr>
<tr>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_19U</td>
<td>1.0000</td>
<td>0.99627</td>
<td>0.99499</td>
<td>0.98301</td>
</tr>
<tr>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_19U</td>
<td>0.99678</td>
<td>0.99667</td>
<td>0.99805</td>
<td>0.99809</td>
</tr>
<tr>
<td>CY_52T</td>
<td>CY_52T</td>
<td>CY_53T</td>
<td>CY_Q12</td>
<td>CY_M50</td>
<td>CY_M44</td>
<td>CY_M30</td>
<td>1.0000</td>
<td>0.99544</td>
<td>0.97114</td>
<td>0.96621</td>
</tr>
<tr>
<td>CY_53T</td>
<td>CY_53T</td>
<td>CY_53T</td>
<td>CY_Q12</td>
<td>CY_M50</td>
<td>CY_M44</td>
<td>CY_W05</td>
<td>1.0000</td>
<td>0.99644</td>
<td>0.98583</td>
<td>0.96845</td>
</tr>
</tbody>
</table>

Three six column tables were created using different methods: arrays, macros, and PROC ODS. PROC ODS has wide ranging applications since it provides a way to easily convert results in the Output window to a SAS data set. PROC ODS is the fastest, simplest solution of the three presented here. It allows for easy use of the BEST=n option and therefore does not require additional work to generalize. The array solution is next in order of simplicity, but still uses macro coding and subtle quotations to populate the arrays. The macro solution is the most complex. Both arrays and macros offer the flexibility to generalize the method to n columns. A subset of the final table is presented in Table 3.

Table 3: Partial SAS Data set showing all variables and their 5 highest correlates

<table>
<thead>
<tr>
<th>Variable</th>
<th>Best1</th>
<th>Best2</th>
<th>Best3</th>
<th>Best4</th>
<th>Best5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY_1ST</td>
<td>CY_44T</td>
<td>CY_W01</td>
<td>CY_34T</td>
<td>CY_24T</td>
<td>CY_E23</td>
</tr>
<tr>
<td>CY_19U</td>
<td>CY_49U</td>
<td>CY_39U</td>
<td>CY_29U</td>
<td>CY_19U</td>
<td>CY_W31</td>
</tr>
<tr>
<td>CY_24T</td>
<td>CY_34T</td>
<td>CY_44T</td>
<td>CY_F44</td>
<td>CY_W11</td>
<td>CY_T09</td>
</tr>
<tr>
<td>CY_39U</td>
<td>CY_39U</td>
<td>CY_49U</td>
<td>CY_39U</td>
<td>CY_19U</td>
<td>CY_W31</td>
</tr>
<tr>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_44T</td>
<td>CY_44T</td>
</tr>
<tr>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_49U</td>
<td>CY_49U</td>
</tr>
<tr>
<td>CY_52T</td>
<td>CY_52T</td>
<td>CY_53T</td>
<td>CY_Q12</td>
<td>CY_M50</td>
<td>CY_M44</td>
</tr>
<tr>
<td>CY_53T</td>
<td>CY_53T</td>
<td>CY_53T</td>
<td>CY_Q12</td>
<td>CY_M50</td>
<td>CY_M44</td>
</tr>
</tbody>
</table>
REFERENCES

APPENDIX

The Census Data used to create the data set REPORTED can be found at http://www.census.gov/govs/estimate/historical_data_2007.html#state_local. Select the "State by Type of Government – Public Use Format" ZIP file. This will download a text file, 07statetypepu.txt. Place that file in a folder named PAPER. It may be necessary to change the file locations in the code below.

OPTIONS NOMLOGIC NOMPRINT NOSYMBOLGEN;
ODS TRACE ON;
LIBNAME PAPER 'H:\Sas Paper'; /* This should be changed to the user's location. */
%GLOBAL numvars;
/* Clean input data */

DATA PAPER.INPUT;
 INFILE "H:\Sas Paper\07statetypepu.txt"; /* Change to the user's location. */
 INPUT state_code $ 1-2
 type_of_gov $ 3
 item_code $ 5-7
 amount 9-20
 ;
RUN;

PROC TRANSPOSE DATA=PAPER.INPUT OUT=PAPER.REPORTED PREFIX=CY_;
 BY state_code type_of_gov;
 ID item_code;
RUN;

DATA PAPER.REPORTED;
 SET PAPER.REPORTED (DROP= CY_A54 CY_K: CY_Y10 CY_Y15 CY_Y50 CY_Y54 CY_Z45
 state_code type_of_gov_NAME_);
RUN;

/* Create macro variables */

PROC SQL NOPRINT;
 SELECT NAME, NAME, NAME, COUNT(*)
 INTO :varlist SEPARATED BY ' ', :varlistcomma SEPARATED BY ',',
 :varlistquote SEPARATED BY '"",', :numvars
 FROM SASHELP.VCOLUMN
 WHERE LIBNAME='PAPER' AND MEMNAME='REPORTED';
QUIT;

/* Create Correlation Matrix */
PROC CORR DATA=PIE. REPORTED NOSIMPLE NOMISS NOPRINT OUTP=PIE.CORRS
 WHERE(_TYPE_="CORR")
RUN;
/* ARRAY SOLUTION */
DATA PIE.CTABARRAY (RENAME=(NAME=Variable));
 SET PIE.CORRS;
 ARRAY var {&numvars} &varlist;
 ARRAY corrvarname {&numvars} "$ (&varlistquote);
 DO y=1 TO &numvars;
 var{y}=ABS(var{y});
 END;
 DO z=1 TO &numvars;
 IF (var{z}=LARGEST(2,&varlistcomma)) THEN Best1=corrvarname{z};
 IF (var{z}=LARGEST(3,&varlistcomma)) THEN Best2=corrvarname{z};
 IF (var{z}=LARGEST(4,&varlistcomma)) THEN Best3=corrvarname{z};
 IF (var{z}=LARGEST(5,&varlistcomma)) THEN Best4=corrvarname{z};
 IF (var{z}=LARGEST(6,&varlistcomma)) THEN Best5=corrvarname{z};
 END;
 DROP y z;
 KEEP _NAME_ Best1-Best5;
RUN;
/* MACRO SOLUTION */
%MACRO top5;
 &DO i=1 %TO &numvars;
 DATA COLUMN&i. (KEEP=%SCAN(&varlist,&i.) _NAME_);
 SET PIE.CORRS;
 %SCAN(&varlist,&i.)=ABS(%SCAN(&varlist,&i.));
 RUN;
 PROC SORT DATA=COLUMN&i.;
 BY DESCENDING %SCAN(&varlist,&i.);
 RUN;
 DATA COLUMN&i. ;
 SET COLUMN&i. ;
 IF (_N_ LE 6);
 RUN;
 %END;
 DATA ALLCOLUMNS;
 SET COLUMN; ;
 RUN;
 DATA &DO i=0 %TO 5;
 CTDATA&i. (KEEP= Best&i. c)
 %END;
 SET ALLCOLUMNS;
 x=MOD(_N_ - 6)-1;
 IF x=-1 THEN x=5;
 c=CEIL(_N_/6);
 &DO i=0 %TO 5;
 IF x=i. THEN DO;
 Best&i. = _NAME_;
 OUTPUT CTDATA&i. ;
 END;
 %END;
 RUN;
 DATA PIE.CTABMACRO (RENAME=(best0=Variable));
MERGE %DO i=0 %TO 5;
 CTDATA&i. (KEEP= Best&i. c)
%END;

; BY c;
DROP c;
RUN;

PROC SORT DATA=PAPER.CTABMACRO;
 BY Variable;
RUN;

PROC DATASETS NOLIST;
 DELETE COLUMN:;
QUIT;
%MEND;
%top5;

/* PROC ODS SOLUTION ***/
ODS OUTPUT PEARSONCORR=PAPER.CTABODS (KEEP=Variable best2-best6
 RENAME=(best2=Best1 best3=Best2 best4=Best3 best5=Best4 best6=Best5));

PROC CORR DATA=PAPER.REPORTED NOSIMPLE BEST=6 NOMISS OUTP=CORRS;
 VAR &varlist;
RUN;

ODS LISTING;
ODS TRACE OFF;

ACKNOWLEDGEMENTS

Thank you to Suzanne Dorinski and Mary Ann Koller who tirelessly withstood John’s seemingly endless barrage of questions.

CONTACT INFORMATION

SAS is learned largely by doing. Feel free to contact the presenting author with your questions or comments.

John Barrow
Email: john.barrow@census.gov
Phone: (301) 763-9967

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks or trademarks of SAS® Institute Inc. in the USA and other countries. © indicates USA registration. Other brand and product names are trademarks of their respective companies.