

 Page 1 of 6

Paper PO-10

TIPS AND TRICKS OF EFFICIENT SAS® PROGRAMMING FOR SDTM DATA
Eric Qi, Merck & Co., Upper Gwynedd, Pennsylvania

Fikret Karahoda, Merck & Co., Upper Gwynedd, Pennsylvania

ABSTRACT
Dataset sizes increased dramatically after the pharmaceutical industry adopted the SDTM data model. For exam-
ple, SUPPQUAL, CF, and LB domains can easily reach several gigabytes (GB) in size. The need to process this
data efficiently becomes more important even when using today's high-speed computer resources. In this paper,
we will discuss a case to show how efficient programming plays an important role in handling large SAS datasets.

INTRODUCTION
Dataset size increased dramatically after the pharmaceutical industry adopted the SDTM data model. SUP-
PQUAL, CF, and LB domains, for example, can easily reach several GB. One SAS program can sometimes run
for several hours. In this paper, we point out performance bottlenecks and propose reasonable improvement solu-
tions.

EFFICIENCY
Efficiency can come from several categories that includes:

• CPU time - the time the Central Processing Unit spends performing the operations assigned

• I/O time - the time the computer spends on the two tasks of input and output. Input refers to moving the
data from storage areas such as disks or tapes into memory. Output refers to moving the results out of
memory to storage or to a display device

• Memory - the size of the work area that the CPU must devote to the operations in the program

• Data storage - how much space on disk or tape the data occupies

The sample data used in this paper is a 6.4 GB SUPPQUAL domain containing 1,676,389 observations. We
will use this data to investigate the following case and identify the bottleneck impeding performance.

CASE AND TIPS

CASE: SUBSET A DOMAIN DATA FROM THE SUPPQUAL DATA

Finding the bottleneck
There are several methods to subset a domain data from the SUPPQUAL data; the following four methods were
tested:

1. Hash object

2. Data step with WHERE statement

3. Data step with IF statement

4. PROC SQL

Following are the codes we used:

 Page 2 of 6

We used PC SAS 9.1.3 and data residing in our company network drive. The real time, User CPU time, System
CPU time, and Memory used for each of these four methods listed in the following table:

**** Hash object ;
data domainlist;
 length rdomain $2 const 8;
 rdomain='AE';
 const=1;
 output;
run;

data new;
 if 0 then set domainlist ; * match parms types ;

 DCL hash hh (dataset: 'domainlist') ;
 hh.DefineKey ('rdomain') ;
 hh.DefineData ('const') ;
 hh.DefineDone () ;

 do until (eof);
 set data.&indata end=eof;
 if hh.find()=0 then output;
 end;
 stop;
run;

**** Data step with WHERE statement;
data new;
 set data.&indata;
 where rdomain='AE';
run;

**** Data step with IF statement;
data new;
 set data.&indata;
 if rdomain='AE';
run;

**** PROC SQL;
proc sql;
 create table new as
 select *
 from data.&indata
 where rdomain='AE';
quit;

 Page 3 of 6

Table 1. Comparison of real time, User CPU time, System CPU time and Memory using data from network drive.

Method Real Time
(hh:mm:ss)

User CPU
(Second)

System CPU
(Second)

Memory (K)

Hash object 1:01:28 9.07 9.64 592

Data step with WHERE
statement

1:03:32 2.48 9.17 190

Data step with IF statement 1:05:26 4.81 10.10 184

PROC SQL 1:09:02 2.53 10.49 162

Among these four methods, the real times are very similar. Although the hash object method used more CPU
time and memory than the other three methods, the difference was small. Additionally, the one hour plus running
time was too long to run jobs from network drive.

If we copy SUPPQUAL data into a local PC and run, will improved performance be achieved? Surprisingly, it is
much better! Table 2 below shows the average real time, User CPU time, System CPU time, and Memory used.

Table 2. Comparison of real time, User CPU time, System CPU time and Memory using data from local PC.

Method Real Time

(hh:min:ss)

User CPU
(Second)

System CPU
(Second)

Memory (K)

Hash object 0:02:23 4.54 5.87 592

Data step with WHERE
statement

0:02:31 1.55 6.98 190

Data step with IF statement 0:02:34 2.60 6.88 180

PROC SQL 0:02:34 1.34 8.27 159

Noticeably, the CPU times differ by only a few seconds, and the big difference is in the real time. Real time re-
duced from hours to minutes with the majority of the real time being I/O time. We found that I/O is the bottleneck
that primarily affects performance that brings us to the challenge of how to find a .solution.

Truncate off excessive trailing blanks
We know that I/O time is the time a computer utilizes to move data from storage areas such as disks or tapes into
memory, move results out of memory into storage, or moving data to a display device. If the file size can be re-
duced by truncating excessive trailing blanks in character variables, improved I/O time may be achieved.

PROC CONTENT of both original SUPPQUAL and truncated one are listed below:

Content of original SUPPQUAL
Variable Type Len Label

4 IDVAR Char 8 Identifying Variable
5 IDVARVAL Char 200 Identifying Variable Value
0 QEVAL Char 200 Evaluator
7 QLABEL Char 200 Qualifier Variable Label
6 QNAM Char 200 Qualifier Variable Name
9 QORIG Char 200 Origin
8 QVAL Char 2000 Data Value
2 RDOMAIN Char 2 Related Domain Abbreviation

 Page 4 of 6

1 STUDYID Char 200 Study Identifier
3 USUBJID Char 200 Unique Subject Identifier

Content of truncated SUPPQUAL

Variable Type Len Label

 4 IDVAR Char 8 Identifying Variable
 5 IDVARVAL Char 19 Identifying Variable Value
10 QEVAL Char 1 Evaluator
 7 QLABEL Char 40 Qualifier Variable Label
 6 QNAM Char 8 Qualifier Variable Name
 9 QORIG Char 1 Origin
 8 QVAL Char 235 Data Value
 2 RDOMAIN Char 2 Related Domain Abbreviation
 1 STUDYID Char 8 Study Identifier
 3 USUBJID Char 18 Unique Subject Identifier

After truncating, the dataset size reduced from 6.4 GB to 144 MB, resulting in a 98% reduction in data size. Real-
izing that different methods generally do not affect performance and to simplify the process, we decided to pro-
ceed using only Data step with the WHERE statement. We ran the Data step with the WHERE statement using
truncated SUPPQUAL data located in a network drive. The following is the result:

Table 3. Comparison of real time, User CPU time, System CPU time and Memory using truncated data from
network drive.

Method Real Time
(seconds)

User CPU
(Second)

System CPU
(Second)

Memory (K)

Data step with WHERE
statement

1.23 1.03 0.14 183

The performance displayed in Table 3 is much better than using the original data in a network drive, and real time
decreased from one hour to one second.

Compress the data
SAS has a good quality feature to compress the data, and if data is compressed, the size of the data will be
smaller and I/O time will be less. Therefore, if the SUPPQUAL data is compressed and the compressed SUP-
PQUAL data is used as input for the above code, what is the size of the compressed data and what will be the
resulting performance?

Tthe following code was used to compress the data:

data data.suppqual_c(compress=yes);
 set data.suppqual;
run;

 Page 5 of 6

The SUPPQUAL data was compressed by 97% and the size reduced to 164 MB. We ran the Data step with the
WHERE statement using compressed SUPPQUAL data located in the network drive. The following is the result:

Table 3: Real time, User CPU time, System CPU time and Memory using compressed data from network drive

Method Real Time
(Second)

User CPU
(Second)

System CPU
(Second)

Memory (K)

Data step with WHERE
statement

2.22 1.99 0.17 200

The performance is much better than un-compressed data in the network drive and is similar to using truncated
data; real time reduced from one hour to several seconds.

DISCUSSION:
Both truncating and compressing large size data can dramatically improve I/O time and overall performance, and
both approaches are easy to implement. However, the one drawback of truncating the character variables is that
data attributes will change.

There are two ways to apply compress options - one is global options with compress=yes, the other is applying
compress=yes in the data step as shown in the above code. Both approaches will make the output datasets cre-
ated in the data steps or procedures compressed. However, to improve the programs on which you are working
efficiently, you may need to compress the large input data first.

CONCLUSION:
In today's clinical trial data represented in the SDTM model, the dataset sizes can easily reach to several giga-
bytes requesting excessive amount of time to process these datasets within SAS programming environment. Our
experiment shows that the real bottleneck in the process is the I/O time in network. By pre-compressing the large
input data, the SAS programming performance can be improved dramatically.

REFERENCES
[1] Keiko I. Powers,2001. Efficient Statistical Programming? - Let SAS® Do the Work. SUGI 80-26.
[2] Kirk Paul Lafler. 2000. Efficient SAS® Programming Techniques. SUGI 146-25.
[3] Rick Langston. 2005. Efficiency Considerations Using the SAS® System. SUGI 002-30.
[4] SAS Programming Efficiencies. http://www.ssc.wisc.edu/sscc/pubs/4-3.pdf
[5] Leigh Ihnen and Mike Jones, 2009. Improving SAS® I/O Throughput by Avoiding the Operating System File
Cache. http://support.sas.com/resources/papers/proceedings09/327-2009.pdf

ACKNOWLEDGMENTS
The authors greatly acknowledge the review and candid feedback from Donna Usavage, Ellen Asam, Margaret
Coughlin and Maryann Williams,.

TRADEMARKS
SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

 Page 6 of 6

Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

CONTACT INFORMATION

Eric Qi
Scientific Programming
Biostatistics and Research Decision Sciences
Merck & Co. (UG1D-88)
North Wales, PA 19454-2505
Office: (267) 305 6902
E-mail: Eric_Qi@merck.com

Fikret Karahoda
Scientific Programming
Biostatistics and Research Decision Sciences
Merck & Co. (UG1D-88)
North Wales, PA 19454-2505
Office: (267) 305 1370
Email: fikret_karahoda@merck.com

