Using the Excel XP tagset and DDE to create At-A-Glance Summary Spreadsheets—Compiled, Written, and Formatted with one SAS® click!
Christine R. Kraft, The University of Alabama, Tuscaloosa, AL

ABSTRACT
Using the Excel XP tagset is a quick and clean method for creating Excel spreadsheets with multiple tabs, various numbers of tables per tab, and formatting specific to individual sheets or cells. When an At-A-Glance summary page is needed in addition to these detailed views, it would be convenient to be able to simply copy and format some of the tables from various tabs into an appropriately-sized summary page. When a task such as this is repeated on a frequent basis and the created sheet has a relatively-fixed format, it makes sense to include this summary sheet creation into the SAS® program. In this paper, we will show how to make use of the EXCELXP tagset and its many options to create formatted tables in Excel. We will then show how to use Dynamic Data Exchange (DDE) to assemble a summary sheet for an At-A-Glance look at the detailed tables.

INTRODUCTION
The Excel XP tagset allows us to output results from SAS and to format Excel spreadsheets during SAS run time. This translates to a reduction in formatting errors, a reduction in work time when used on a continued basis, and an increase in productivity. Adding DDE to the program can complete the report by allowing us to copy and paste from one sheet to another, format individual cells, add formulas to tables, and do almost anything that can be done in Excel from SAS. In this way, we can move towards producing a publishable report with one SAS click!

Figure 1: At-A-Glance Summary Sheet
Figure 1 is an example of an at-a-glance summary page created from several tables in the workbook using the Excel XP tagset and DDE. To begin, we will discuss the Excel XP tagset and its many options. Often, publishable reports can be made solely using this tagset without any additional manual interaction. However, when an at-a-glance summary page is also desired, we can use DDE to accomplish tasks from SAS during run time which otherwise might have to be done manually. We will begin by discussing the Excel XP tagset, then discuss DDE, and finish with an example of the capabilities of SAS using both.

SETTINGS

In this paper, we use Base SAS 9.1.3, Microsoft® Office Excel® 2007, and the ExcelXP tagset version 1.86. The current, as well as previous, versions of the ExcelXP tagset are available for download from the SAS Knowledge Base website located at: http://support.sas.com/md/base/ods/odsmarkup. The tagset is created using PROC TEMPLATE and is shown in Figure 2 as it appears on the SAS website. Note that no knowledge of PROC TEMPLATE is required to update or use the ExcelXP tagset. The process for updating the ExcelXP tagset is simply to copy and paste the code into a blank SAS editor, or save the code as a SAS file, and submit the code. This will create or update the ExcelXP tagset. When used, the ExcelXP tagset will write a note in the SAS log indicating the current version number. The note is also shown in Figure 2.

ODS AND SAS OPTIONS

We can use the ExcelXP tagset simply to export the results of our PROC PRINT, PROC TABULATE, or PROC REPORT without using any options. However, this would be doing the ExcelXP tagset and ourselves a great injustice because the ExcelXP tagset has so many useful options that can save us time and make our documents look much cleaner. To see what kind of output we would get using none of the tagset's options, Example 1 shows the output...
from running the given code. The first figure in Example 1 shows the default settings of the ExcelXP tagset, including the default style, the default title settings, and the default sheet naming conventions. That is, the default style is the gray background and the blue column headings. The default title settings place the titles and footnotes in the header and footer, respectively, which cannot be seen in the normal view of Excel. The default sheet name is “Table n – Data Set Set Name,” as shown in Example 1.

Example 1: Output using ExcelXP tagset with no options—using the default style and the printer style.

The other Figure in Example 1 shows the same output with a different background and font styles. Although not an ExcelXP option, the ODS option STYLE can be used with the ExcelXP tagset. Styles can be customized or created using PROC TEMPLATE, but SAS has many styles built-in for use. To see the names of the built-in styles, type “odstemplates” into the dialog box in the upper left corner of SAS. Click on Sashelp.Tmplmst and then double click on Styles. The contents of Styles will display. See Figure 3. Double clicking any of the style names will load the Template browser. Unfortunately, it will not give you a preview of the style. To see examples of the styles, use them as in Example 1, replacing default with any other style name.

Other useful SAS options when using the ExcelXP tagset for outputting into Excel are those which set the margins and paper size in Excel. These options are intuitively named and straight-forward to use. RIGHTMARGIN, LEFTMARGIN, TOPMARGIN, and BOTTOMMARGIN set the right, left, top and bottom margins respectively using inches by default. Centimeters can also be used. See the following code. The PAPERSIZE option can also be used. The default is letter; legal can be specified. Alternately, width and height values can be submitted in inches (default) or centimeters. See the following code.

```sas
options RightMargin = .5in
      LeftMargin = 1.25cm
      Papersize = legal;
```
We can also use STYLE options within PROCs to output data in a certain format to Excel. For example, in order to center the row headings in a PROC TABULATE, we may write the following code:

```sas
proc tabulate data=sashelp.shoes missing;
class subsidiary region;
classlev subsidiary/style=[just=c];
var sales;
table subsidiary='',
       n=''/box='Subsidiary';
title1 'Shoe Sales';
run;
```

However, built-in SAS number and character formats may not be outputted to Excel depending on the PROC used. PROC TABULATE and PROC REPORT do not send that information to Excel, although PROC PRINT does. In order to output our results in the desired formats, we will use the TAGATTR parameter within PROC REPORT and PROC TABULATE. We will discuss this parameter as if it is an ExcelXP option in the next section.

EXCELXP OPTIONS

The ExcelXP tagset has 60 options as of its most current release. This may seem overwhelming to the novice ExcelXP tagset user, but fear not! The following list will provide an alphabetical list of some useful, simple options, including a reference to an example in which they are used. The examples will be shown throughout the listing.

ABSOLUTE_COLUMN_WIDTH = 'n2, n3, ...'

Sets the column width in Excel. The numbers correspond to each column in order. If '20', then all columns will be have a column width of 20 if there is more than one column. If '20, 30', the first column will have a width of 20, the second 30, the third 20, the fourth 30, and so on for the number of columns you have. You may use as many values as needed to accommodate the number of columns you have. If you have more values than you have columns, the extra are ignored. Note that PROC PRINT sends information through the ExcelXP tagset to set the column widths in Excel. PROC TABULATE and PROC REPORT do not. In any case, we can override the column widths set by any PROC using ABSOLUTE_COLUMN_WIDTH. (See Example 2, line 9.)
Example 2: ExcelXP Options and Multiple Sheets

```sas
   %let footer_text = &LInstitutional Research and Assessment (C. Kraft)
   %&i3The University of Alabama
   &R&fdate, Page &P of &N&#13&Z&F;
   options topmargin=1in bottommargin=1in
   leftmargin=.5in rightmargin=.5in;
ods tagsets.excelxp file="c:\example2.xls" style=Meadow
options(absolute_column_width="20"
   center_horizontal = 'yes'
   center_vertical = 'yes'
   embedded_titles='yes'
   embedded_footnotes='yes'
   fittopage = 'yes'
   orientation='landscape'
   print_footer="&footer_text"
   scale = '80'
   sheet_interval='none'
   sheet_name='African Shoe Sales'
run;
ods tagsets.excelxp close;
```

```
   proc tabulate data=sashelp.shoes missing style=[tagattr='format:$#,##0.00'];
      class subsidiary region;
      var sales;
      table subsidiary='', sales*sum=''/box='Subsidiary';
      where region = 'Africa';
      title1 'Shoe Sales for Africa';
      footnote1 'This is an embedded footnote.'; run;
ods tagsets.excelxp file="c:\example2.xls" style=Meadow
options(absolute_column_width="20"
   center_horizontal = 'yes'
   center_vertical = 'yes'
   embedded_titles='yes'
   embedded_footnotes='yes'
   fittopage = 'yes'
   orientation='landscape'
   print_footer="&footer_text"
   scale = '80'
   sheet_interval='none'
   sheet_name='Canadian Shoe Sales'
run;
ods tagsets.excelxp close;
```

```
proc tabulate data=sashelp.shoes missing style=[tagattr='format:$#,##0.00'];
   class subsidiary region;
   var sales;
   table subsidiary='', sales*sum=''/box='Subsidiary';
   where region = 'Canada';
   title1 'Shoe Sales for Canada';
   footnote1 'This is an embedded footnote.'; run;
ods tagsets.excelxp close;
```
AUTOFIT_HEIGHT = 'yes': Automatically sets the row heights in Excel so that wrapped text can be seen. Default is no.

CENTER_HORIZONTAL = 'yes': Centers the results horizontally on the printed page. Default is no. (See Example 2, line 10.)

CENTER_VERTICAL = 'yes': Centers the results vertically on the printed page. Default is no. (See Example 2, line 11.)

DEFAULT_COLUMN_WIDTH = 'n1, n2, ...': This option works the same way as absolute column width, but it can be overridden by procedures that send column width information to the printer. PROC REPORT and PROC TABULATE do NOT send column width information to the printer. PROC PRINT does. So, if you want to set column widths, you must use ABSOLUTE_COLUMN_WIDTH with PROC PRINT. (See Example 3, line 4.)

EMBEDDED_FOOTNOTES = 'yes': Embeds footnotes in the spreadsheet instead of putting them in the footer. Default is no. (See Example 2, line 13.)

EMBEDDED_TITLES = 'yes': Embeds titles in the spreadsheet instead of putting them in the header. (See Example 2, line 12 and Example 3, line 5.)

EMBED_TITLES_ONCE = 'yes': Embeds titles in the spreadsheet before the first table and not again, no matter how many tables are outputted to that sheet.

FITTOPAGE = 'yes': This option fits the output onto one page for printing. (See Example 2, line 14.)

FROZEN_HEADERS = 'n': If 'Yes' the rows down to the bottom of the headers will be frozen when the table data scrolls. This includes any titles created with the embedded titles option. If a number is given, that is the row count that will be frozen.

ORIENTATION = 'landscape': The default for this option is portrait. (See Example 2, line 15 and Example 3, line 6.)

PAGES_FITHEIGHT = 'n': This option sets the number of pages to print to. If the number is in excess of the amount needed, the option has no effect. I often use this in conjunction with FITTOPAGE = 'yes' in order to get a width of one page. The PAGES_FITWIDTH option doesn't work for me. I don't know if it is a SAS 9.1.3 problem with the excelxp tagset or not.

PRINT_FOOTER = "&footer_text": This option will print the footer in your excel file where footer_text is a macro variable with your footer text. You may use Excel option variables such as the following within your footer text. (See Example 2, line 1-3, 16.)

Row: Newline:
Date: &D Page Number: &P Pages: &N
Time: &T File Path: &Z
File: &F Sheet Name: &A Left Align: &L
Underline: &U Font Size: &8 Right Align: &R

ROW_HEIGHTS = 'n1, n2, n3, n4, n5, n6, n7': This option controls how tall the rows will be for each type of row. The numbers are in points as is used in Excel. The parameters of this option are positional, but not all values must be specified. A value of 0 means that the height should be taken from the style. The first value is the height for table header rows. The next is the height for the table body rows. The next value is the row height for bylines. The fourth is for titles, the fifth is for footers, the sixth is the pagebreak height, and the last value is the height for paragraph skip.

ROW_REPEAT = 'n1-n2': If a number is specified that row will be repeated across pages when a worksheet breaks across pages when printing. If a range such as '3-5' is given, that range of rows will be repeated. If 'header' is given, the table headers for the first table of the worksheet will be repeated.

SCALE = 'n': This option sets the scale of the document for printing. (See Example 2, line 17.)

SHEET_INTERVAL = 'none': The valid values for this option are 'none', 'table', 'proc', 'bygroup', and 'page'. The default is 'table', meaning that a new page is created for each new result. If you use the option SHEET_INTERVAL = 'table', you do not have control of the sheet names. The 'bygroup' option is helpful when you are outputting tables by group and want the sheet name to equal the by value. Use 'none' if you want to control when Excel starts a new tab. (See Example 2, line 18 and Example 3, line 7.)

SHEET_LABEL = 'Tab label': This option allows you to label a sheet something other than the SHEET_NAME. I only use this option when using SHEET_INTERVAL = 'bygroup'. In that case, we use SHEET_LABEL = 'none', and the SHEET_LABEL defaults to using the by group value. (See Example 3, line 8.)
SHEET_NAME = 'Tab name': This option allows you to name the current sheet. If you do not also specify a SHEET_LABEL, this is automatically the SHEET_LABEL. For a bygroup, use SHEET_NAME = 'none'. (See Example 2, line 19 and Example 3, line 9.)

SUPPRESS_BYLINES = 'yes': If 'Yes' Bylines will not appear in the worksheet. This is useful when you note the bygroup value somewhere else, such as in the title. (See Example 3, lines 10 and 20).

TAGATTR: Used in a STYLE option, the TAGATTR parameter is used to display a variable in an Excel format. Some examples of Excel formats are 0.00, #,##0.0, and $#,##0_. (See Example 2, lines 22 and 34 and Example 3, line 17).

ZOOM = 'n': This option sets the "zoom view" in Excel's View menu. (See Example 2, line 20.)
DYNAMIC DATA EXCHANGE (DDE)

DDE uses the Excel 4 Macro (X4ML) language to communicate from SAS to Excel. This is a sometimes tedious way to accomplish tasks, which is why performing as much formatting as possible using the ExcelXP tagset prior to using DDE will make your programs shorter and more user-friendly. Furthermore, if the Excel task to be accomplished by DDE is not being used multiple times or the layout of the output to be altered by DDE may change depending on the SAS run, DDE may not improve performance time. This is due to the rather painstaking amount of coding necessary. Thus, an analysis of time to code versus time to perform the tasks manually and check for errors may be appropriate.

Perhaps the most appropriate tasks to be performed by DDE are those done on a spreadsheet that does not change in layout and that is updated on a repeating basis. An example of this for the Office of Institutional Research at the University of Alabama is At-A-Glance Enrollment Summaries. Prior to delving into this particular topic, we show how to engage DDE in SAS.

Note that in order to use DDE, both SAS and Excel must be open. The following block of code activates Excel by calling the executable file. This may vary by computer. It then puts SAS to sleep for five seconds while Excel opens. The filename statement creates a reference to Excel. The final data step opens the file given by the macro variables dir\fname. This block of code opens Excel and the file we intend to alter using DDE. In order to make any alterations to the file, we need to explore the X4ML commands.

```sas
/*Activate Excel*******************************************************/
options noxsync noxwait;
%let xlsCmdPath = C:\Program Files\Microsoft Office\Office12\EXCEL.EXE;
x "'&xlsCmdPath'";
data _null_; 
  rc = sleep(5);
run;
/*Create a reference to Excel*******************************************/
filename sas2xl dde 'excel|system';
/*Open the file you just created***************************************/
data _null_; 
  file sas2xl;
  put '[error(false)]';
  put '[OPEN("'&dir'\"&fname'\")]';
run;
```

The following is a list of commands to use in DDE, along with comments regarding what each accomplishes. A complete guide detailing all of the X4LM commands is available for download at http://support.microsoft.com/kb/128185, but only the following are used in the program used to create an At-A-Glance Summary in Appendix A.

Activate: Activate(window_text)

Alignment: Alignment(horiz_align, wrap, vert_align, orientation, add_indent)

Borders: Border(outline, left, right, top, bottom, shade, outline_color, left_color, right_color, top_color, bottom_color)

Clear: Clear(type_num)

Column Width: Column.width(width_num, reference, standard, type_num, standard_num)

Copy: Copy(from_reference, to_reference)
AT-A-GLANCE SUMMARY PROGRAM

After outputting a multi-sheet detailed report using the ExcelXP tagset, we can use DDE to create a summary page. We do this by using the Excel file containing the report and the X4ML commands above to select, copy, paste, and format into an At-A-Glance Summary Sheet. Figure 4 shows the file output from the SAS program in Appendix A prior to using DDE. It has three sheets, each with a detailed look at enrollment.
Using DDE and the workbook shown in Figure 4, we can update the workbook with a new worksheet using tables from the three original sheets and Excel formatting. This At-A-Glance sheet in Figure 5 is a publishable report. See Appendix A for the SAS code, which is a compilation of the techniques presented in this paper. For the aggregated data sets, contact the author.

CONCLUSION
The ExcelXP tagset is a wonderful tool to aid in producing publishable reports from SAS during run time. And in many instances, it can do just that. However, when a summary sheet compiling data from multiple tables into one At-A-Glance summary view is desired, alternate means are necessary to accomplish this undertaking from SAS during run time. In this paper, we use DDE to complete the task. Recording or writing macros in Visual Basic in Excel and then calling those macros from SAS during run time would be another appropriate method for completing this summary page.
REFERENCES

RECOMMENDED READING

CONTACT INFORMATION

Your comments and questions are valued and encouraged. For comments, questions, SAS code, SAS styles, or data sets specific to this paper, contact the author at:

Christine R. Kraft
Office of Institutional Research and Assessment
The University of Alabama
Box 870166
Tuscaloosa, AL 35487
crkraft@bama.ua.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.
APPENDIX A: ENROLLMENT AT-A-GLANCE CODE

***;
%let progr=Enrollment_summary.sas;
%let dir=P:\SAS;
%let fname=Enrollment_summary.xls;
%let term=FALL;
%let year=2008;
%let year_term=200840;
%let footer_text =&LInstitutional Research and Assessment (C. Kraft)
&13The University of Alabama
&R&fdate, Page &P of &N&13&Z&F;
***;
libname oira "&dir";

proc format;
value $college
'1'='Arts & Sciences' '2'='Commerce & Business'
'3'='Comm & Info Scs' '4'='CCHS'
'5'='Continuing Educ' '6'='Education'
'7'='Engineering' '8'='Graduate School'
'9'='Human Environmental Scs' '91'='Law'
'92'='Nursing' '93'='Social Work';
value $status
'1' = 'TOTAL'
'2' = 'FULL-TIME'
'3' = 'PART-TIME'
'4' = 'FULL-TIME EQUIVALENT (FTE)';
value $level
'1' = 'UG'
'2' = 'GR'
'3' = 'PROP';
value $sex
'1' = 'Male'
'2' = 'Female';
value $race
'1' = 'White'
'2' = 'African-American'
'3' = 'Asian/Pacific Island'
'4' = 'Hispanic'
'5' = 'Am Indian/Alas N'
'6' = 'Non-Res Alien'
'7' = 'Unreported';
run;

options missing='';
ods tagsets.excelxp file="&dir\&fname" style = uaOIRA
options(sheet_interval='none'
 embedded_titles='yes'
 print_footer="&footer_text"
 center_horizontal='yes'
 fittopage='yes'
 sheet_name='Enrollment at a Glance'
 orientation = 'landscape');
/* Just a fake procedure so that we have a "blank" sheet for doing the summary on. */
proc sql;
select count(*)
from oira.enrollment
where status = '5';
quit;
ods tagsets.excelxp
options(sheet_interval='none'
 sheet_name='Enrollment by College'
 default_column_width="18,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6"'
 orientation = 'landscape');
title3 "Enrollment by College, &term &year";
proc tabulate data=oira.enrollment style=[tagattr='format:#,##0'];
format college $college. status $status. level $level.;
class college status level;
var enroll;
table college='' all='Total',
 status=''*(level='' all='Total')*(enroll=''sum='');
run;
ods tagsets.excelxp
options(sheet_interval='none'
 sheet_name='Distribution by Sex'
 default_column_width=6'
 orientation='portrait'
);
title3 "Distribution by Sex, &term &year"
proc tabulate data=oiragender_enrollment style=[tagattr='format:#,##0'
format lev $level. sex $sex;
class lev sex;
var enroll;
table sex='all='Total',
 (lev='all='Total')*(enroll='*sum=')/box='SEX';
run;

options missing='0'
ods tagsets.excelxp
options(sheet_interval='none'
 sheet_name='Distribution by Race'
 default_column_width='16, 5, 5, 5, 5'
);
title3 "Distribution by Race, &term &year"
proc tabulate data=oirarace_enrollment style=[tagattr='format:#,##0'
format lev $level. race $race;
class lev race;
var enroll;
table race='all='Total',
 (lev='all='Total')*(enroll='*sum=')/box='RACE';
run;

proc tabulate data=oirarace_enrollment style=[tagattr='format:#,##0.0'
format lev $level. race $race;
class lev race;
var enroll;
table race='',
 lev='*(enroll='*colpctsum=') enroll='*reppctsum='TOTAL'/box='RACE';
run;
ods tagsets.excelxp close;

/*Activate Excel***/
options noxsync noxwait;
%let xlsCmdPath = C:\Program Files\Microsoft Office\Office12\EXCEL.EXE;
x
"&xlsCmdPath";
data _null_
 rc = sleep(5);
run;
/*Create a reference to Excel ***/
filename sas2xl dde 'excel\system';

/*Open the file you just created***/
data _null_
file sas2xl;
put '{error(false)}';
put '{OPEN(""&dir"\"&fname""})';
run;
/*Move, copy, format cells, etc. in the file*************************************/
data _null_
file sas2xl;

put '[WORKBOOK.ACTIVATE("Enrollment by College")];

put '[select("r5c1:r6c1")]; put '[edit.delete(2)]; /*shift cells up*/
put '[select("r5c1")]; put '[insert(2)]; /*shift cells down*/
put '[select("r5c1")]; put '[formula("COLLEGE/SCHOOL")]';
put '[select("r5c1")]; put '[FORMAT.FONT("Arial", 11, true)]'; /*bold*/
put '[select("r7c2:r19c17")]; put '[FORMAT.FONT("Arial", 11, false)]'; /*set column width for columns 2-17*/
put '[select("r9")]; put '[insert(2)]; /*shift cells down*/
put '[select("r21")]; put '[insert(2)]; /*shift cells down*/

put '[select("r21c1")]; put '[FORMAT.FONT("Arial", 11, true, , , , 3)]'; /*bold, red*/
put '[formula("% of Total")]; /*write formulas to certain cells*/
put '[select("r21c2")]; put '[formula("=r20c2/r20c5*100")]';
put '[select("r21c3")]; put '[formula("=r20c3/r20c5*100")]';
put '[select("r21c5")]; put '[formula("=r20c5/r20c5*100")]';
put '[select("r21c6")]; put '[formula("=r20c6/r20c5*100")]';
put '[select("r21c7")]; put '[formula("=r20c7/r20c5*100")]';
put '[select("r21c8")]; put '[formula("=r20c8/r20c5*100")]';
put '[select("r21c9")]; put '[formula("=r20c9/r20c5*100")]';
put '[select("r21c10")]; put '[formula("=r20c10/r20c5*100")]';
put '[select("r21c11")]; put '[formula("=r20c11/r20c5*100")]';
put '[select("r21c12")]; put '[formula("=r20c12/r20c5*100")]';
put '[select("r21c14")]; put '[formula("=r20c14/r20c5*100")]';
put '[select("r21c15")]; put '[formula("=r20c15/r20c5*100")]';
put '[select("r21c16")]; put '[formula("=r20c16/r20c5*100")]';
put '[select("r21c17")]; put '[formula("=r20c17/r20c5*100")]';

put '[select("r21c2:r21c17")]; put '[FORMAT.NUMBER("#,##0.0")]';
put '[FORMAT.FONT("Arial", 11, true, , , 3)]'; /*bold, red*/
put '[select("r5c1:r21c17")]; put '[border(0,0,0,0)]'; /*clear borders*/
put '[select("r5c1")]; put '[border(1)]'; /*border=outline*/
put '[select("r6c1")]; put '[border(1)]';
put '[select("r7c1:r18c1")]; put '[border(1)]';
put '[select("r19c1:r21c1")]; put '[border(1)]';

put '[select("r5c2:r5c5")]; put '[border(1)]';
put '[select("r5c6:r5c9")]; put '[border(1)]';
put '[select("r5c10:r5c13")]; put '[border(1)]';
put '[select("r5c14:r5c17")]; put '[border(1)]';

put '[select("r6c2:r5c5")]; put '[border(1)]';
put '[select("r6c6:r5c9")]; put '[border(1)]';
put '[select("r6c10:r5c13")]; put '[border(1)]';
put '[select("r6c14:r5c17")]; put '[border(1)]';

put '[select("r7c2:r18c5")]; put '[border(1)]';
put '[select("r7c6:r18c9")]; put '[border(1)]';
put '[select("r7c10:r18c13")]; put '[border(1)]';
put '[select("r7c14:r18c17")]; put '[border(1)]';

put '[select("r19c2:r21c5")]; put '[border(1)]';
put '[select("r19c6:r21c9")]; put '[border(1)]';
put '[select("r19c10:r21c13")]; put '[border(1)]';
put '[select("r19c14:r21c17")]; put '[border(1)]';
put '[select("r1c1")]'; put '[save()]

[workbook.activate("Distribution by Sex")]; /*switch sheets*/
put '[select("r5c1")]'; put '[FORMAT.FONT("Arial", 11, true)]';
put '[select("r6c2:r9c5")]'; put '[FORMAT.FONT("Arial", 11, false)]';
put '[select("r5c5:r8c5")];' put '[FORMAT.FONT("Arial", 11, true)];'
put '[column.width(10,"c1:c5")];'

put '[select("r5c1:r8c5")];' put '[border(0,0,0,0,0)];'
put '[select("r5c1:r5c5")];' put '[border(0,0,0,1,1)];'
put '[select("r7c1:r7c5")];' put '[border(0,0,0,0,1)];'
put '[copy("r5c1:r8c5")];' put '[select("r14c1")];'
put '[paste.special(4)];'
put '[select("r15c2:r17c5")];' put '[FORMAT.NUMBER("#,#0.0"]);'
put '[select("r1c1")];

put '[workbook.activate("Distribution by Race")];/*switch sheets*/
put '[select("r5c1")];' put '[FORMAT.FONT("Arial", 11, true)];'
put '[select("r12c1:r12c5")];' put '[FORMAT.FONT("Arial", 11, false)];'
put '[select("r13c5:r13c5")];' put '[FORMAT.FONT("Arial", 11, true)];'
put '[select("r13c1:r13c5")];' put '[FORMAT.FONT("Arial", 11, true)];'
put '[column.width(10,"c2:c5")];'

put '[select("r5c1:r13c5")];' put '[border(0,0,0,0,0)];'
put '[select("r5c1:r5c5")];' put '[border(0,0,0,1,1)];'
put '[select("r20c2:r27c5")];' put '[FORMAT.NUMBER("#,#0.0"]);'
put '[select("r1c1")];' put '[save();]

put '[WORKBOOK.ACTIVATE("Enrollment at a Glance")];/*switch sheets*/
put '[select("c1")];' put '[edit.delete(4)];/*delete the "fake" data we output*/

/*Copy tables from each sheet and paste them into the appropriate cells. Format as needed*/
put '[select("r12c1:r12c17")];' put '[formula(""&term &year ENROLLMENT AT A GLANCE")];
put '[alignment(7)];' put '[FORMAT.FONT("Arial", 12, true)];'
put '[select("r2c1:r2c17")];' put '[formula("THE UNIVERSITY OF ALABAMA")];
put '[alignment(7)];' put '[FORMAT.FONT("Arial", 12, true)];
put '[column.width(28,"c1")];

put '[WORKBOOK.ACTIVATE("Enrollment by College")];
put '[copy("r5c1:r21c17")];
put '[WORKBOOK.ACTIVATE("Enrollment at a Glance")];
put '[select("r4c1")];' put '[paste.link()];
put '[paste.special(4)];'
put '[select("r4c1:r4c17")];' put '[FORMAT.FONT("Arial", 11, true)];
put '[patterns(1,,6)];'

put '[WORKBOOK.ACTIVATE("Distribution by Sex")];
put '[copy("r5c1:r8c5")];
put '[WORKBOOK.ACTIVATE("Enrollment at a Glance")];
put '[select("r23c13")];' put '[paste.link()];
put '[paste.special(4)];'
put '[select("r22c13:r22c17")];' put '[formula("Distribution by Sex")];
put '[alignment(7)];' put '[FORMAT.FONT("Arial", 11, true)];

put '[WORKBOOK.ACTIVATE("Distribution by Race")];
put '[copy("r5c1:r13c5")];
put '[WORKBOOK.ACTIVATE("Enrollment at a Glance")];
put '[select("r23c1")];' put '[paste.link()];
put '[paste.special(4)]'; put '[save()]';
put '[select(“r22c1:r22c5”)]'; put '[formula("Distribution by Race")]';
put '[alignment(7)]'; put '[FORMAT.FONT("Arial", 11, true)]';
put '[patterns(1, , 6)]'; put '[border(0,0,0,1,1)]';

put '[select("r22c7:r31c7")]' put '[alignment(2,false)]';
put '[WORKBOOK.ACTIVATE("Distribution by Race")]';
put '[copy("r19c1:r26c5")]' put '[WORKBOOK.ACTIVATE("Enrollment at a Glance")]';
put '[select("r23c7")]' put '[paste.link()]';
put '[paste.special(4)]'; put '[save()]';
put '[select("r22c7:r22c11")]' put '[formula("Percent Distribution by Race")]';
put '[alignment(7)]'; put '[FORMAT.FONT("Arial", 11, true)]';
put '[patterns(1, , 6)]'; put '[border(0,0,0,1,1)]';

put '[select("r18, r5c1")]' put '[clear(3)]';
put '[select("r1c1")]' put '[zoom("75")]' put '[PAGE SETUP(, , .25, .25, .4, , true, , 2, , true)]';

put '[save()]'; run;

data _null_; file sas2xl;
put '[quit()]'; run;