Interrogate the Interrogator: Presenting SAS® Usage Information Using BI Tools
Emilio Power, ThotWave Technologies, Chapel Hill, NC
Shawn Edney, ThotWave Technologies, Chapel Hill, NC

ABSTRACT
In simple and complex SAS® deployments performance monitoring is often desired to ensure ideal efficiency in resource utilization. With out of the box deployments the availability of this information is somewhat difficult to extract and analyze though. The SAS® Application Response Monitoring (ARM) tool allows you to collect a variety of metrics on how your SAS® environment is performing. Useful information such as user CPU statistics and data accesses can be evaluated to measure system performance, user utilization and provide for data access monitoring. While several resources are available on how to implement the ARM tool there is a lack of information on how to analyze or report the information. This paper will present a series of examples using BI principles to gain insight on the utilization of your SAS® BI environment and provide feedback to management, system administrators and users. Whether it is the goal to improve the performance of a stored process in a series of batch jobs or monitoring hardware utilization in the scope of scaling resources for a growing BI environment, existing but underutilized SAS® monitoring tools can have an immediate impact on sustaining an efficient BI environment.

KEYWORDS: ARM, Monitoring, Resource, Utilization

INTRODUCTION
As large organizations upgrade to SAS® Enterprise BI Server (EBI) the information and insights gleaned through EBI become a strategic advantage which demands more rigorous monitoring and control of the EBI environment to reduce downtime and provide maximum performance. EBI processes though can prove to be fairly difficult to monitor due to the wide array of access mechanisms and application servers. One way to glean a wide range of monitoring details is to take advantage of the SAS® Application Response Measurement (ARM) interface to gather process information.

This paper will focus on presenting brief examples of how ARM data can be leveraged to provide powerful insights into SAS® environment usage. The implementation of ARM will not be covered. The recommended reading section at the end of this paper contains a list of sources for further information on implementing ARM. The ARM information we will focus on will include process timing (when it occurred), process CPU statistics, data source accesses and user information. While this is far from the full range of information available through ARM it provides enough information to perform a range of system monitoring and analysis, providing a mechanism for locating system issues and monitoring users with processes exhibiting inefficient or suspicious behavior.

BI CONCEPTS IN MANAGING THE SAS® ENVIRONMENT
When considering the development of an information delivery system for the purposes of business intelligence and management, of the EBI environment, careful planning must be taken to ensure data delivered actually solves business problems. In this context we would like to provide information that would allow a SAS® administrator a mechanism to quickly diagnose ongoing activities in order to become proactive in environment management. In 2007 ThotWave conducted a survey to identify what are the driving interests in creation of dashboards; “Performance Management” and “Guide Tactics” were the top responses. Taking the proper principles in mind one can develop an efficient environment where maintenance and scalability action items can be identified. There are 4 principles that should be kept in mind when presenting information: (Wright, 2008)

- Present the right information
- Provide context for measures
- Communicate effectively
- Facilitate taking action

In the case of monitoring the SAS® environment and the presentation of ARM data there are various items an administrator would like to know about the ‘health’ of the system. Unlike other BI environments, SAS® provides an open framework where users are capable of building custom applications which run processes ranging from ETL to
Analytics. While this flexibility allows an organization to create custom applications with great ease it can also lead to a level of inefficiency if proper SAS® application development practices are not followed. Creating an EBI environment with proper design allows the dashboard and EBI interface to provide the right information to enact any action items when needed. Some important information that ARM data can provide should include the following areas: SAS® application efficiency, user activity, data source utilization, and report efficacy.

DASHBOARDS FOR HIGH LEVEL INFORMATION
When considering how to monitor EBI processing, a SAS® administrator’s first thoughts might be to look at the total environment to get a sense of how the primary systems are being used. This gives us a good opportunity to use the SAS® Information Delivery Portal (IDP) to deliver information via dashboards and SAS® Web Report Studio (WRS) reports. The dashboard is especially good for presenting high level information from across the system. A sample dashboard is presented in Figure 1.

The “CPU Process Time” dashboard (Figure 1, top left) is meant to provide immediate feedback on the total CPU seconds consumed by SAS® processes on each server over a specified period of time. Often this time period would be set to report on either the current or previous day’s processing. This information item gives immediate feedback on the SAS® processing load being carried out on a particular server as well as a comparison across servers to see how well balanced the load is across servers. Significant imbalance across the available servers might point to a configuration or system issue within a grid environment. If monitoring multiple servers that are not in a grid environment then the dashboard provides immediate feedback on what servers are underutilized. Underutilized servers could then be tasked to perform some of the work of servers reporting high CPU usage.

The “User Count” dashboard (Figure 1, top right) is meant to provide immediate feedback on the number of distinct users that have logged on to each server within a specific period of time. As with the previous dashboard this one would usually provide feedback for the current day or previous day. When reviewing this information as presented the SAS® administrator can gain insight into how well the servers are utilized by users.

The graph, shown in the lower left corner of Figure 1, shows the number of times specific libraries were accessed during a period of time. This particular example counts the individual step accesses such as when a datastep, SQL step or procedure accesses a library for read or write access. For example when a user submits a sql step to extract from library TEST and writes output to library WORK, the count for TEST and WORK are incremented by one. This type of chart is especially useful when looking for issues related to accessing specific groups of data sources. For example it might be beneficial to show the number of accesses that occurred on all the libraries that are used to access databases. From one standpoint it shows data usage, but from another aspect it could also point to inefficiencies caused by users not using SQL pass through queries when extracting data from databases.

The lower right chart in Figure 1 uses the Information Map Data Exploration for a seamless presentation of CPU processing time compared to total process time. This information is important in diagnosing potential bottlenecks. One of the most common bottlenecks is usually around memory settings or I/O as processors wait for data to be moved around. While the example given in this figure is for an entire environment, showing information for each server, drilling down into reports broken down by users and or processes can further allow diagnosing of bottlenecks. Chew et al.(1999) shows that comparison between user time and actual process time is significant when diagnosing various issues related to RAID Stripping, Disk Caching, and memsize settings.

DIGGING DEEPER
While the high level information presented in Figure 1 is certainly valuable it will be valuable to create additional dashboards and reports to monitor specific pain points unique to the environment. For example consider Figure 2 which provides a dashboard and a couple of charts.

The “Percent Processor Wait Time” dashboard (Figure 2, top left) provides derived information on a specific aspect of the environment. In this case it provides a measure of the average amount of time a SAS® process spends on tasks that are not directly attributable to actual SAS® processing. This time lag difference is often attributed to

- SAS® waiting on I/O resources such as disks
- Databases to respond
- Host operating system to schedule the SAS® process threads

High wait times could point to process inefficiencies, network problems or host operating system issues and give the SAS® administrator time to deal with a potential issue before it effects the whole environment.

The “Utilization Stack by User by Hour” chart (Figure 2, bottom left) illustrates how SAS® processing can be tracked by user by hour for a specific period of time. This kind of presentation could be useful to a SAS® administrator as a
way of reviewing who was consuming significant resources across all environments, or a single server. It might also be useful to present this information for a subset of users such as those belonging to a particular group. One other interesting point with this type of information is that it can pinpoint users who may be using the systems during non-business hours. This may be due to scheduled jobs, an overloaded employee or possibly be cause to investigate suspicious activity.

While a lot of the examples we have given lack a time dimension the use of timestamps included with ARM output provide the potential for methods to develop trends or usage patterns over time. Creating trends can be descriptive in nature allowing for an administrator to quickly identify conflicts in loads. One example might be to identify that certain user groups are running jobs during the time of important nightly ETL loads, raising the risk of performance issues that could affect the ETL jobs ability to finish their processes in a timely manner. On the opposite side it can also identify unused resources to help in planning for increased loads or improving scheduling plans. In the given example it is clear that certain user are responsible for significant loads but there is also a large amount of unused resources that allow for jobs to be scheduled after 12 AM. In this example we are using a stored process which allows the developer access to all of the SAS® analytics capabilities in his/her environment. Things such as trending, regression, and predictive modeling can all be leveraged through this method.

FIGURE 1:
PROFILING SERVER ACTIVITY

One of the first questions asked by an organization working to maintain a server is ‘How do we optimize server settings?’ Since SAS® has such an open ended environment it is impossible to give a vanilla answer. One of the primary things a SAS® administrator needs to know in order to do such optimization is to identify the type of applications the SAS® servers are running. Servers with heavy datastep applications may require different optimizations compared to a server that is running a larger portion of Procedure steps such as SORT or SQL. Leveraging the artifact data provided in ARM output can help one profile the load on a particular server or it can be focused down to a specific user. Looking for deltas on utilization can allow an administrator to predict and develop action plans to address potential changes to avoid unnecessary bottlenecks. Figure 3 provides an example of this kind of information.

USER UTILIZATION

Analysis of user code processes and activity can be done through ARM and displayed in several ways. Figure 4, a report that can be published through SAS® Web Report Studio, illustrates how it is possible to monitor a generalized profile of user SAS® processes. Artifact tracing by user was tracked for a development group and User008 were given very similar ETL tasks. By analyzing this report User05 is writing code that is leveraging proc sql steps vs. User08 code that is relying on many data step transformations. This type of information can give developers and or administrators important tools when trying to understand why there might be performance issues.
CONCLUSION
While EBI tools have been designed with intentions to address business problems the management of the EBI environment, with the same tools, allows for an organization to expand vertically its deployment of SAS® EBI ensuring maximum efficiency which often leads to greater return on investment. In review of the EBI presentation methods covered in this paper one must remember to ensure that the main principals listed by Wright(2008) are met. An administrator needs certain information to meet the business goal of ensuring maximum efficiency in the EBI environment whether that means communication with a DBA of a highly used data source or identifying conflicts between scheduled loads have an impact on performance. In this paper we have presented methods for delivering information through EBI using the SAS® Dashboards, SAS® Web Report Studio, SAS® Information Maps and SAS® Stored Processes all presented through a single application the SAS® Information Delivery Portal.

PRESENT THE RIGHT INFORMATION.
The ARM examples are presented through a trusted data source giving information that is unavailable through normal SAS® logging procedures.

PROVIDE CONTEXT FOR MEASURES.
The ability to drill down and present data by server, group, user, and specific processes allows for an administrator to look at information with the correct granularity to address many potential issues. In addition it allows for quick assertions for analyzing deltas in regards to performance.

COMMUNICATE EFFECTIVELY
The ability to use multiple SAS® analysis and reporting tools with a single delivery platform allows the delivery of ARM data in an efficient manner. Dashboards provide a wide range of information delivery graphics that provide a quick snapshot of data and/or trend. Web Report Studio allows for detailed reports that are quickly customizable by the user. Information Maps allows for specific data to be surfaced in a quick manner and Stored processes allow for advanced analytic techniques including the leveraging the full power of SAS® analytics.

FACILITATE TAKING ACTION
The SAS® EBI tools allows for near live and historical data delivery but has the capabilities of drilling down to specific information that is often necessary for action items to be completed.

With proper design it is clear that SAS® Enterprise BI is great for presenting ARM data. We have provided a series of examples on how to leverage ARM data and show how a SAS® Administrators could benefit from having an environment that monitors itself. While this is not an exhaustive review of either ARM or EBI capabilities the information reviewed offers a great starting point on the way to develop an EBI solution to monitor your EBI investment.

REFERENCES
Wright, JEFF SAS®: The Ultimate Dashboard Machine, ThotWave Technologies, Chapel Hill, NC. Available at: www.thotwave.com

RECOMMENDED READING

CONTACT INFORMATION
Contact the authors at:

Emilio Power
ThotWave Technologies
510 Meadowmont Village Circle #192
Chapel Hill, NC 27517
800-591-THOT
epower@thotwave.com
http://www.thotwave.com

Shawn Edney
ThotWave Technologies
510 Meadowmont Village Circle #192
Chapel Hill, NC 27517
800-591-THOT
sedney@thotwave.com
http://www.thotwave.com

ThotWave®, thinking data®, and the ThotWave® distinctive logotype are registered trademarks of ThotWave Technologies, LLC.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. © indicates USA registration. Other brand and product names are trademarks of their respective companies.