

Using SAS With a SQL Server Database

M. Rita Thissen, Yan Chen Tang, Elizabeth Heath
RTI International, RTP, NC

ABSTRACT

Many operations now store data in relational
databases. You may want to use SAS® to access
and update information in SQL Server or other SQL-
based systems. We have used SAS to manage and
utilize project data in relational databases for a
longitudinal survey. The survey applications use
SAS through PROC SQL to read data from an
existing SQL Server database or SAS macro
language to update or insert data into SQL Server
tables. The data-loading process also uses SAS
formats and functions to clean data, which ensures
compatibility with later SQL queries. We will provide
examples of SAS code that perform these tasks.

INTRODUCTION

Longitudinal studies follow changes that occur over
time in a population (or sample group).
In managing such studies, databases are needed for
maintaining data collection events and subject
contact data. We find it effective to use relational
databases and SAS programs to track data
collection activities, and we give here a brief
discussion of the language elements and their usage
under the Microsoft® Windows® operating system.

Structured Query Language (SQL) can be used to
access and maintain data that are contained in
relational databases. With Open Database
Connectivity (ODBC) and PROC SQL, SAS users
can create SAS datasets from, and manage the data
contained in, relational databases. Before reviewing
how SAS users can process SQL Server data, we
need to briefly compare SQL and SAS syntax.

SQL LANGUAGE BASICS

Structured query language is a language used to
define and manipulate database objects and the
data they contain. As in other languages, each SQL
statement contains a number of elements that must
follow syntactic rules. Figures 1 and 2 show a
simple SQL statement and its SAS language
equivalent.

Relational tables are used to store data and are
similar to SAS datasets. Tables are composed of
rows (or records) that correspond to SAS rows or
observations. Table rows are composed of columns
(or fields), with each one named and defined as

some data type. Columns are comparable to SAS
variables. The fields named in the select statement
are returned in the results of the query, much as the
variables named in a KEEP= option are stored in the
resulting dataset.

Figure 1. Simple SQL query

select Table1.CaseID, Table1.Name,
Table2.PhaseNum, Table2.Age, Table2.Health
from table1 inner join table2
on table1.CaseID = table2.CaseID
where CaseID ='101121'
order by Age

Figure 2. Equivalent SAS language code

proc sort data=dataset1 (keep = CaseID Name);

by caseID;
run;

proc sort data=dataset2 (keep = CaseID PhaseNum
Age Health);

by CaseID;
run;

data New;
merge dataset1(in=in1) dataset2(in=in2);
by CaseID;
where CaseID ='101121';
if in1 and in2;

run;

proc sort data=New;
by Age;

run;

SQL statements allow you to specify a search
condition. You can enter a clause containing a
search condition to limit the rows of data you want
the SQL Server to return. The SQL WHERE clause
acts the same as the SAS language WHERE
statement.

To combine multiple tables, an INNER JOIN is
frequently stated with equal conditions for matching
one or more columns of one table with those of
another table. In SAS programs, this is achieved
with the MERGE statement, IN= variables, an
associated BY statement and conditions. Columns
in relational databases do not need to have the
same name to be used in the ON clause of the
JOIN, although they commonly do share the same
name.

With SQL, you can sort the returned results on any
column value and specify an ascending or
descending order through the ORDER BY clause,
while in SAS programs, datasets are sorted with
PROC SORT and BY statements.

SQL queries may employ multilevel names to
uniquely identify a field: use
database.owner.table.field in SQL to specify which
database, owner and table the field belong to, if
there is any ambiguity. In our example below, we
use two-level naming, although one-level or
multilevel names could be used if the fields were
named uniquely. Multilevel names for SAS datasets
are somewhat comparable, with LIBNAME at the top
level followed by dataset name. However, the SAS
language does not support the concept of owners,
and variable names must be unique across any
datasets that are merged, or else used as BY
variables in the merge to yield a unique field in the
resulting dataset.

USING PROC SQL TO READ SQL SERVER DATA

ODBC connections provide a programming interface
to various types of databases. The ODBC
connection permits data to be obtained from,
modified in, or inserted into different types of ODBC
databases from within SAS programs or other
applications.

An ODBC connection must first be configured on the
user’s workstation for the relational database,
through the appropriate Windows control panel. In
configuring the connection, the server, database
name, login, and password are established. Figure
3 shows how the connection is designated and
activated through a SAS language program.

Figure 3. Sample PROC SQL statements

%let connectA = dsn="databaseName" (A)
uid="userID" pwd="password";

proc sql exec; (B)
connect to odbc (&connectA); (C)
create table newSD2 as (D)
select * from connection to odbc (E)
(select * from SQLtable where (F)
var1 = 'someCondition');

create table secondSD2 as
select * from connection to odbc
(select * from diffSQLtable where
var2 = 'someCondition');

disconnect from odbc; (G)
quit; (H)
run;

A SAS macro variable (connectA) is shown in line
(A) that provides the ODBC connection database

name, user login, and password to be used in line
(C). The login and password may be based on
either Windows NT® or SQL Server authentication,
but must match the ones used to establish the
ODBC data source. For multi-user systems, each
station must be configured with its own ODBC
connection, and if Windows NT authentication is
used, it is important to make sure that all users have
access to the database.

SAS datasets can be created from SQL Server
tables with the SQL procedure (PROC SQL).
Please refer to SAS manuals about PROC SQL
options that you may need. For example, if PROC
SQL is submitted as part of a batch run, the EXEC
option [line (B)] will allow the SQL procedure to
continue to run subsequent SQL commands even if
one SQL command fails.

As mentioned in the brief review of SQL language
basics, a SQL table corresponds closely to a SAS
dataset. In line (D), the CREATE TABLE statement
will create a new SAS dataset named NewSD2. The
new dataset, made via the ODBC connection in line
(E), will be the result of the SQL statement in line
(F).

For program correctness and syntactic checking, the
SQL statement should be tested on the SQL Server
prior to running PROC SQL. Testing the SQL
statement may also reveal data value problems. For
instance, in inserting or updating SQL Server table
data, data values that contain an apostrophe (like
O’No) may cause the SQL insert or update
command to fail. Before running PROC SQL, such
apostrophes could be removed or changed to a
blank space in data values through techniques such
as a SAS format assignment (with a formatted value
of “‘” = “ “) or the SAS language compress function
[revisedData = compress(orginalData, “‘“)].

The DISCONNECT statement closes the ODBC
connection in line (G). In this example, two new
SAS datasets are created from two different tables
in the same SQL Server database before the ODBC
connection is disconnected.

The QUIT statement in line (H) stops execution of
the SQL procedure. The DISCONNECT and QUIT
statements could be omitted if the SQL procedure
were followed by another SAS procedure call or data
step. If a DISCONNECT statement is not submitted,
the ODBC connection is disconnected when the
SQL procedure ends.

Even if you successfully run a SQL procedure, the
SAS program may later fail if a variable has
mismatched field lengths and types in datasets
derived from SAS and SQL Server sources. To

avoid such problems, be sure to match variable
attributes for data obtained from SAS and SQL
Server sources.

EXPORT FROM SAS, IMPORT TO SQL SERVER

Data management operations may require the
program to store new or updated data from SAS
datasets to the SQL Server database. One
approach writes the SAS data to a text file, which
can then be imported into SQL Server tables by
using one of several tools:

• Bulk Copy Procedure (BCP, bundled with
SQL Server client tools)

• Data Transaction Services (bundled with
SQL Server Enterprise Manager)

• Visual Basic® (VB) or other OLE-enabled
language.

An example of BCP is given below, followed by a
discussion of the other approaches.

Writing data from SAS to a text file is a common
practice, using PUT statements. For example, see
Figure 4, a text file with comma separators and fixed
field lengths. The output from the SAS program is
shown in Figure 5. We can use this output as input
for BCP or one of the other import methods.

Figure 4. SAS program to write text file

%let comma=”,”;

data _null_;
set SASDemo;
file SASDemo;
put CaseGrp $CHAR6. &comma

CHFIRST $CHAR019. &comma
CHINITL $CHAR001. &comma
CHLAST $CHAR020. &comma
CHAGE 004. &comma
CHDOB $CHAR008.

;
run;

Figure 5. Text file output

101043,GEORGE ,WASHINGTON , 2,11152001
101044,JOHN ,ADAMS , 9,11122001
101036,THOMAS ,JEFFERSON , 1,06292001

With BCP, we can add (insert) these rows into a
table in a SQL Server database. The table must be
defined in advance, and the input data must either
match the field attributes exactly or be read in as
text fields. In this example, the fields are all text.
BCP requires a format file as a second input when
reading data, such as the one in Figure 6.

The format file specifies the version of SQL Server
compatibility (in this example, version 7.0), the
number of table fields (6) and the characteristics of
the text data to be imported. The first formatting line
specifies that value #1 will be read as character
data, with zero offset spaces, length six characters,
separated by a comma, inputting the value to field
#1 which has the field name “GroupID”. In general,
the value in the sixth formatting column will match
the first. However, if your table has more fields than
you need to use, you may mark them with a zero in
the sixth format column, which tells BCP to skip that
table field when inserting the data. Line 4, the field
“Withdrawn,” is skipped in this example. Note that
you must indicate the absence of the separator
comma if it will not be present.

Figure 6. BCP format file

7.0
6
1 SQLCHAR 0 6 "," 1 GroupID
2 SQLCHAR 0 19 "," 2 CHFirst
3 SQLCHAR 0 20 "," 3 CHLast
4 SQLCHAR 0 0 "" 0 Withdrawn
5 SQLCHAR 0 4 "," 5 ChAge
6 SQLCHAR 0 10 "," 6 ChDOB

Guidelines for preparation of BCP format files and
instruction in the use of BCP can be found in
Microsoft SQL Server Books Online and other
sources.

Once the text file and BCP format file have been
prepared, the insertion can take place on any station
that runs SQL Server client software. The following
BCP statement can be run from the command line or
from within a command or scripting program.

bcp SampleDB.dbo.SASData in SASDemo.txt
-fDemo.fmt -SDemo4 -T

In this statement, the terms act as follows:

• BCP calls the bulk copy procedure (BCP)
• SampleDB.dbo.SASData specifies the SQL

server database, table owner and table name
• In indicates that BCP is to accept input
• SASDemo.txt - the name of the input text file
• -f indicates that a format file should be found
• Demo.fmt is the name of the format file
• -S indicates that a server name will follow
• Demo4 is the name of the server which holds

the database
• -T indicates that BCP should use NT

authentication.

Note that the flags (-f, -S and –T) are case sensitive.
Other flags exist and can be used for other
operations, as described in the literature.

Of course there are many other ways to import data
from a text file into a table. Two common ones are
through Microsoft’s Data Transaction Service (DTS),
which can be used interactively or as a scheduled
task, or by creating a program in a language such as
VB, which can take advantage of ODBC connections
or Object Linking and Embedding (OLE) and the
features of SQLOLEDB.dll.

When would you choose each tool? For batch-
mode inserts, especially of large quantities of data,
BCP is a good choice. However, BCP is not a tool
for updating data; that is, if you wish to change
values of fields in existing rows, you cannot use
BCP. In that case, you would turn to DTS or a VB
application. These tools require a deeper
understanding of relational database management
but offer greater power and flexibility.

WRITING FROM SAS TO SQL SERVER

Figure 7 provides sample SAS code that updates
data in a SQL Server table called tbl_SASData.
Lines marked in the figure perform the following
tasks:

(A) initializes a macro variable to zero. This
variable will be used as a counter, but would not
be created in the data _null_ step if the input
dataset had no observations

(B) selects variables to be output

(C) creates a macro variable Cmd# for each
SAS observation. The macro variables form a
macro array, in which the value is taken from the
dataset variable SQLCmd. Each element of the
macro array is a SQL statement which will be
used to update a column named SASField for
the appropriate table row. The row is selected
according to a key field that matches the SAS
variable VarVal with the table key value IDField.

(D) starts PROC SQL and then connects to the
SQL Server database

(E) loops through the macro array, using the
macro variable values as commands to the SQL
Server database

(F) passes each command to the ODBC
connection for execution

(G) disconnects the ODBC connection

(H) runs the macro program defined in lines (D)
through (G).

Figure 7. SAS program to update SQL Server
data

%let nobs = 0; (A)

data _null_;
set example
(keep = CaseID VarVal) end=lastobs; (B)
length SQLCmd $200;
retain counter 0;
counter = counter + 1;
SQLCmd = "Update tbl_SASData set
SASField = '" || compress(VarVal) || "'
where IDField = '" || compress(CaseID) || "'

" ;
if _N_ = 1 then do;

* write one SQL command to the log for
use in debugging;
put SQLCmd=;

end;
call symput ("cmd" || compress(put(counter,

8.)), SQLCmd); (C)
* record the total number of observations in

a macro variable;
if lastobs then do;

call symput ("nobs", counter);
end;

run;

%macro SQLDemo;
proc sql exec; (D)
connect to odbc (&connect);

%do i=1 %to &nobs; (E)
execute (

&&cmd&i
) by odbc; (F)

%end;
disconnect from odbc; (G)
quit;

%mend;
%SQLDemo; (H)
run;

SUMMARY

The sample code and commentary above may
provide readers with a glimpse of the potential of
PROC SQL. Heterogeneous systems such as those
containing SAS programs and SQL Server
databases are common in software systems for
supporting survey research. Although they may
seem difficult to manage at first, with the right tools
an effective and practical system can be created.

ACKNOWLEDGEMENTS

We gratefully acknowledge support by R. Suresh
and Jean Richardson.

CONTACT INFORMATION

M. Rita Thissen, rthissen@rti.org, (919) 541-6046
Yan Chen Tang , ytang@rti.org, (919) 541-7398
Elizabeth Heath, eah@rti.org (919) 485-2786

All authors can be reached at the mailing address:

 RTI International
 P.O. Box 12194
 Research Triangle Park, NC 27709-2194.

TRADEMARK NOTICE

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

