Fuzzy Key Linkage
Robust Data Mining Methods for Real Databases
Sigurd W. Hermansen, Westat

Abstract
Results of data mining depend heavily on the quality of linkage keys within a search dataset and within its database target. Linkage failures due to errors or variations in linkage keys have few symptoms, and can hide or distort what data have to tell us. More robust methods have promise as remedies, but require careful planning and understanding of specialized technologies. A tour of fuzzy linkage issues and robust linkage methods precedes a review of the results of a recent linkage project. Sample SAS programs include tools and tips ranging from SOUNDEX() and SPEDIS() functions to hash indexing macroprograms.

Introduction
Relational Database Management Systems (RDBMS's) have evolved into a multi-billion dollar industry. In no small part the industry has succeeded because RDBMS's protect the integrity and quality of data. Large organizations have committed huge sums of money and many person hours to enterprise RDBMS's. But while typical RDBMS's effectively repel any attempt to insert duplicate key values in data tables and subvert database integrity, they remain remarkably vulnerable to other types of errors. Most obvious of all, linkage of an insert or update transaction to a database fails whenever the search key in the transaction fails to match bit-by-bit the target key in the database. If a transaction key contains the person ID US Social Security Number (SSN) of 105431002, for instance, instead of the correct 105431802, it will fail to link to the corresponding record for the same person. Correct linkages of tables in an RDBMS depend entirely on the accuracy of columns of data used as key values. Errors in the face values of keys, whatever the sources, not only lead to linkage errors, but also persist. Once admitted to a database, errors in keys seldom thereafter appear on the radar screen of a system administrator.

Do errors in primary and foreign keys actually occur in real databases? Pierce (1997) cites a number of reports indicating that in the early 1990's a near majority or better of US business executives recognized data quality problems in their companies. Arellano and Weber (1998) assert that the patient record duplication rate in single medical facilities falls in the 3%-10% range. Many who have assessed the accuracy of the US SSN as a personal identifier in federated databases, including the author, peg its accuracy at somewhere between 93% and 97%. These estimates suggest a 5% ±2% rate of error in attempts to link transactions or events to a master database.

Failures of keys to link properly have more impact where analysts are mining data for a few nuggets of information in a mountain of data, or where access to critical data requires a series of successful key links. In both situations, errors in keys propagate. Consider how a 1% key linkage failure rate propagates over a series of key links required for a basic summation query [SAS PROC SQL syntax],

```sas
SELECT DISTINCT Person_ID, SUM(amount) AS OUTCOME
FROM Events GROUP BY Person_ID;
```

Key linkage failures may hide the skew of the true distribution. Even small rates of errors produce bias and outliers, such as the summary of amounts per group by a count of related events (GT10), as shown below.

<table>
<thead>
<tr>
<th>ID</th>
<th>Group</th>
<th>GT10</th>
<th>true in DB</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>10111</td>
<td>10111</td>
<td>T</td>
<td>T</td>
<td>300</td>
</tr>
<tr>
<td>10111</td>
<td>10111</td>
<td>T</td>
<td>T</td>
<td>100</td>
</tr>
<tr>
<td>13111</td>
<td>12111</td>
<td>T</td>
<td>F</td>
<td>200</td>
</tr>
<tr>
<td>10111</td>
<td>10111</td>
<td>T</td>
<td>T</td>
<td>100</td>
</tr>
<tr>
<td>12111</td>
<td>12111</td>
<td>F</td>
<td>F</td>
<td>100</td>
</tr>
<tr>
<td>13111</td>
<td>13111</td>
<td>T</td>
<td>T</td>
<td>100</td>
</tr>
<tr>
<td>10111</td>
<td>18111</td>
<td>F</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Result of summation query:

<table>
<thead>
<tr>
<th>GT10</th>
<th>true computed</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>600</td>
</tr>
<tr>
<td>F</td>
<td>700</td>
</tr>
</tbody>
</table>

Errors can affect both the counts of related events and the amounts being summed. Chains of keys that link data in subsidiary tables to master records, typical in SQL views, prove even more vulnerable to errors. Transposing digits in a short integer key likely converts one key into another key value already used to link a different set of data, as in

<table>
<thead>
<tr>
<th>ID</th>
<th>status</th>
<th>ID2</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Negative</td>
<td>43</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>Positive</td>
<td>34</td>
<td>21*</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>43</td>
<td>patientXYZ</td>
</tr>
<tr>
<td>67</td>
<td>34</td>
<td>patientRST</td>
</tr>
</tbody>
</table>

*in truth, T2.ID=12

VIEW V1:

\[
\text{SELECT T23.subject, T1.status FROM T1 INNER JOIN (SELECT T2.ID, T3.subject AS subject FROM T2 INNER JOIN T3 ON T2.ID2=T3.ID2) AS T23 ON T1.ID=T23.ID};
\]

In this case, a transposition in T3.ID links PatientRST to “Negative” and not to the correct value of “Positive”, yet does not trigger a referential integrity constraint. The RDBMS validation scheme fails and the error remains unnoticed. Key linkage errors such as these undermine the efforts of data miners to extract interesting and important information from data warehouses and distributed databases. Many database administrators may have good reason to believe that critical identifying keys in their databases have much lower error rates. Others, whose databases support applications such as direct marketing, might view a 5% linkage failure rate as perfectly acceptable. All others need to consider more robust linkage methods. Knowledge is power, but bad information quickly pollutes a knowledge base.

Alternative Linkage Keys

Robust linkage methods take advantage of alternative key patterns. An alternative key may work when linkage on a primary key pattern fails. If linkage on a 10-digit integer key fails, for instance, an alternative key consisting of standardized names and a date of birth could have a reasonable chance of being a correct match. So would other alternatives, such as a partial sequence of digits in a numeric identifier combined with either a standardized last name or a month and year of birth. Others, such as a match on first name and zip-code, would not.

Alternative linkage keys have to meet at least a couple of basic requirements. First and foremost, a key has to have a fairly high degree of discriminatory power. A weak identifier often finds too many matches that contain too little information to rule them out, much less verify them. Second, the alternative key has to have a good chance of linking correctly when the primary key fails to link. Two alternative linkage keys with independent 5% error rates, for example, have an expected joint failure rate of 0.25% or only 1/20th the rate of either taken alone. For independent 1% error rates, the combined rate falls to 1/100th of the rate of either taken alone. Fuzzy key linkage gains much of its power by providing alternatives that we would not need in a world of perfect information, yet, in the real world prove necessary to prevent costly linkage failures.

Because linkage failures present no obvious symptoms in a typical database system, the information that these failure hide often surprises clients. As data miners’ close cousins, statisticians, know all too well, it takes a lot more evidence and effort to build a good case for a finding that goes against the grain of conventional wisdom, but it scores a lot more points. To compete effectively with an established database administration group, a data miner needs to offer alternatives to routine methods.

Nonetheless, any scheme that involves alternative linkage keys inevitably creates problems for database programmers and, by extension, database clients. The latter group includes not only persons who depend on enterprise RDBMS’s for information, but also clients of networks, of Internet search engines, and of wireless services. These groups are growing rapidly and becoming increasingly dependent on fuzzy key linkage for information. Who among us has not found it frustrating to search through results of a Web search and still not find a Web page that should be there? A Boolean alternative (x OR y) search may find a few more relevant pages, but it often buries them in an ocean of irrelevant pages. In Silicon Valley speak, the sounds of terms associated with robust database searches, "disjunctive query" (Claussen et al, 1996), "iceberg query" (Fang et al, 1998), "curse of dimensionality" (Beyer et al, 1999), "semi-structured data" (McHugh et al, 1977), forewarn us of the computational burden of alternative key linkage.

Of course a decision to integrate alternative linkage keys into database access does not settle the issue. A data miner must also choose the right degree of fuzziness in key linkage. Suppose a data miner uses a search key to locate instances of something that occurs at a rate of approximately one-percent in a database. If the data miner selects an alternative key that matches in error to 1% of the same database, the specificity of key linkage cannot exceed 50% on average. For each true match selected, fuzzy linkage would select on average one false match.

Fuzzy Linkage Methods

Fuzzy key linkage has at least one thing in common with drug therapy. A few “active ingredients” (AI) help alleviate the problem of errors in linkage keys, but each has side-effects that have to be managed carefully with “buffering agents” (BA). The active
ingredients in fuzzy linkage increase dramatically the time and resources needed to compare two sets of records and determine which records to link. The buffering agents do everything possible to make up for losses of efficiency and bring the linkage process sufficiently up to speed to make it feasible.

The order in which different active ingredients get used in the linkage process proves critical. Initial stages of linkage have to strip irrelevant data from key values and filter data as they are being read into buffer caches under operating system control, and do so before the linkage program moves them into working memory or disk space.

Reduced Structure Databases and Data Shaping (AI)

As the scale of databases and the dimensions of alternative keys increase, the idea of loading all key values into a single database, much less contiguous memory, becomes increasingly an academic fantasy. A more realistic linkage model leaves very large data objects in place, outside the key linkage application, and lets the linkage program select only key values and relevant data for processing within the application.

Alternative keys usually represent a dimension of the real world, such as place, interval of time, and other context cues, plus event outcomes, attributes, or other facts that in some sense belong to an entity. In distributed or federated databases, alternative key values retain their meaning while integer key values removed from the context of a RDBMS lose their meaning. An integer makes a good employee ID in an enterprise database, but a poor ID for a person in a database that spans enterprises.

The so-called Star Schema for data warehousing makes it easier to develop a logical view of data that includes alternative and overlapping information. Earlier articles, especially Hermansen (2000), present ideas for implementing alternative keys, disentangling data from file systems, and restructuring databases into forms that better support alternative logical views.

Real database case study(1): A database contains over 10 million records of blood donations. The number of donation records per donor varies from one to several hundred. Multiple observations of donor demographics show surprising variations within sets of records for individual donors. Related donation and donor tables allow full capture of observed responses by donors as well as most likely attributes based on modes of multiple responses. The accuracy of the donor database improves over time as true responses have a better chance of repeating than random errors.

Compression, Piping, Filtering, and Parallel Processing (BA)

No way around it: alternative linkage keys crowd whatever bandwidth a network and OS have to offer. Even bit-mapped composite key indexes become unwieldy. Multiple columns containing names, addresses, date/times, category labels, and capsule descriptions replace neat, continuous sequences of nine-digit ID's.

Harry X Lime 1923256Vienna Austria replaces 105342118

Practical remedies include
1) compression of data streams on a database server and decompression in a pipe that an linkage program reads:

State-of-the-art mainframes implement data compression and piping transparently. Smaller machines leave it up to the programmer to compress data files and set up pipes to decompress them in stream. In the SAS System (Unix in this case) the FILENAME statement,

FILENAME zipPipe PIPE 'gzcat <file path(s) with .zip* extension>'';

reads zipped files through an INPUT process. The programmer can enter a list of file names in a specific order, or specify a regular expression that yields a list. (The last asterisk in *.zip* may only prove necessary when files have hidden version numbers.) In either case the source data files remain in place while data stream into the linkage program. When reading a very large set of records with a SAS program, a pipe often works faster than inputting data directly from an intermediate SAS dataset;

2) filtering data while cached in memory buffers, before they move to the working storage that a linkage program allocates:

In the SAS System, an INPUT statement in a DATA STEP VIEW and a PROC SQL statement referencing the DATA STEP VIEW in a FROM clause caches data in memory where a SQL WHERE clause acts as a filter. Only data that meet initial conditions pass through the filter and enter a SAS WORK dataset;
3) **extracting minimal subsets of data from database servers using views:**

As a rule, a database server does a more efficient job than an application program of handling basic operations on its data tables. A SQL SELECT statement or equivalent in a stored view has primary access to indexes, integrity constraints, and other metadata of the database object, and it executes in an environment tuned to allow quick access.

4) **running data extraction programs in parallel on multiple processors, or even on multiple database servers:**

Some database systems allow more than one thread of a key linkage program to execute in parallel on different processors. The MP CONNECT procedure under SAS/CONNECT®, for example, lets the programmer RSUBMIT different sections of a program to different processors on a SAS server, or to different database servers, where they can execute in parallel. Doninger (2001) and Bentley (2000) describe the benefits of parallel processing with MP CONNECT and include examples. Parallel execution of views on different database servers, for example, makes good use of this new feature of SAS Version 8.

Real database case study (2): A database programmer reported recently on SAS-L that subsetting data into a SAS dataset via a DB2 view cut CPU time to 11% of that required to read the full database and then subset it. It also reduced elapsed time by a factor of six (see SAS-L Archives, subject: RE: SQL summarization question, 12/14/2000).

Data Blurring, Condensing, and Degrees of Similarity (AI)

A linkage key, at least after encoding for storage in a digital computer, amounts to nothing more than a pattern of bits. To attain a higher degree of specificity in key linkage, one must either add information (more bits) or simplify the pattern (using some form of metadata template for valid patterns). To attain a higher degree of sensitivity of key linkage, one must either suppress information (mask bits) or simplify the pattern. Greater specificity means fewer false links among keys; greater sensitivity means fewer failures to find true links. Suppressing bits in a key pattern prior to comparing two keys obviously risks trading more false links for fewer failures to find true links. Confining a sequence of bits (a field in a record) to a limited domain has some chance of increasing sensitivity of linkage by reducing meaningless variations in keys related to the same entity. Fuzzy key linkage attempts to achieve better sensitivity of linkage with the least loss of specificity.

Although the term "fuzzy", as in "fuzzy math", suggests a vague or inconsistent method of comparison, fuzzy key linkage actually provides more precise and consistent results of comparisons. Fuzzy key linkage resolves comparisons of vague and inconsistent identifiers, and does so in a way that makes better use of information in data than bit-by-bit comparisons of keys. It simply takes a lot more time and effort to eliminate alternatives.

Operators and functions specifically developed for fuzzy key linkage make it easier to compare certain forms of alternatives. Each of three general types has a special purpose.

"Blurring" and "condensing" functions transform instances in a domain of values into a domain that has a smaller number of distinct values. Blurring maps similar values to one value; it reduces incidental variation in a key. Condensing reduces the remapped values to a set (distinct values). The SOUNDEX() function or operator (=*), for instance, condenses a set of surname strings to a relatively small number of distinct values:

<table>
<thead>
<tr>
<th>SURNAME</th>
<th>SOUNDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neill</td>
<td>N4</td>
</tr>
<tr>
<td>Neal</td>
<td>N4</td>
</tr>
<tr>
<td>Neill</td>
<td>N4</td>
</tr>
<tr>
<td>Niell</td>
<td>N4</td>
</tr>
<tr>
<td>Neall</td>
<td>N4</td>
</tr>
<tr>
<td>Nil</td>
<td>N4</td>
</tr>
<tr>
<td>NeI</td>
<td>N4</td>
</tr>
<tr>
<td>Nill</td>
<td>N4</td>
</tr>
<tr>
<td>NeIl</td>
<td>N4</td>
</tr>
<tr>
<td>Nilson</td>
<td>N425</td>
</tr>
<tr>
<td>Nelson</td>
<td>N425</td>
</tr>
<tr>
<td>O’Neil</td>
<td>054</td>
</tr>
<tr>
<td>O’Neal</td>
<td>054</td>
</tr>
<tr>
<td>Oneill</td>
<td>054</td>
</tr>
</tbody>
</table>

Blurring and condensing facilitate indexing of keys. An index on a blurred and condensed key occupies less bandwidth and memory, and it clusters similar
key values. A SOUNDEX() transform of any of the
nine similar surnames beginning with an “N” and
ending with an “L” (above) will match to an index
containing “N4”.

A “degree of similarity” operator or function
compares two key values and produces a numeric
value within an upper and lower bound. The upper
bound indicates identical keys; the other bound
indicates no similarities. Combined with a decision
rule, usually based on an explicit, contextual, or
default threshold value, the fuzzy operator or function
reduces to a Boolean. It aggregates the results of
comparisons of alternative keys into a numeric score,
accepts as true links those with scores that exceed a
threshold, and rejects the others. As an example, the
SAS SPEDIS() or “spelling distance” function
calculates a cost of rearranging one string to form
another, where each basic operation used to rearrange
the string has a cost associated with it. A CASE
clause in SAS SQL implements SPEDIS() in a way
that sets a neutral value of 0.4 should either of two
US SSN strings turn up missing, and a value in the
range of zero to one if the comparison goes forward.

case when t1.&SSN1="" or
t2.&SSN2=""
then 0.4
else max((1-length(t1.&SSN1)*
pedis(t1.&SSN1,t2.&SSN2)/200)),0.1)
end as SSNcost

A programmer can use the calculated variable
SSNcost in a Boolean “OR” expression, as in

WHERE (calculated SSNcost > 0.5
AND t1.surname=t2.surname)
OR (calculated SSNcost > 0.8
AND t1.lastname=t2.lastname),

to implement linkage on alternative key patterns, or
combine it with another degree of similarity, to
achieve the same goal.

So-called “regular expressions” and other pattern-
matching operators and functions (such as the SAS
INDEX() function) normally point to a location in a
string or file, or return a “not found” value. This
feature in particular facilitates checks for alternative
patterns in strings, numbers, or other semi-structured
elements in databases. Rhoads (1997) demonstrates
practical uses of pattern-matching functions. These
include tests for a match on a template. Extensions,
such as a series of searches for the location of a phone

Data Standardization, Cleansing, and
Summaries (BA)

Specialized programs for "mailing list hygiene",
standardizing codes, parsing text into fields, and other
database maintenance tasks are beginning to appear in
greater numbers and variety each year. Patridge
(1988) and the www.sconsig.com Web site offer both
free and commercial database standardization,
cleansing, and summarization programs. Pre-
processing can obviously reduce the risk of fuzzy
linkage failures and false matches. Partially for that
reason, database administrators are paying more
attention to data quality metadata, including audit
trails. Best practice combines data quality control
with robust key linkage methods. To help fill in that
niche, SAS® has recently purchased Dataflux and its
Blue Fusion and dIPower Match standardization and
fuzzy linkage products.

A number of data warehouse developers are
rediscovering that old warhorse, the SAS PROC
FREQ, and even more sophisticated stuff such as
stratified sampling, linear regression, and cluster
analysis. Linkage quality really comes down to
keeping expected costs of errors within limits.

Real database case study(4): In a database of
>5M blood donation records linked by a non-
informative donor ID to 1.5M donors, we grouped by
donor and identified unusual sequences of screening
test results. We separated out borderline cases,
verified the results of database searches, estimated
0.05% (95% CI 0-1.5%) frank technical errors in
data management, testing systems, and process
controls (Busch et al, 2000), and recommended
process enhancements in the blood collection
industry to help detect and prevent false-negative
results.

Blocking and Screening on Synthetic,
Disjuctive Keys (AI)

RDBMS performance depends heavily on indexes of
search keys that clients use to link database records to
transactions. As volumes of data approach the limits
of a database, platform, and network, indexes take on
an increasingly important, and constraining, role.
Indexes bound a search on that index to a small block
of key values. A deus ex machina database tuner can
conjure up indexes to optimize transactions, but in
very large databases searches on alternative keys mire
in quicksand.

"Blocking", an old trick in record linkage
methodology, implements a series of searches on
partial primary key candidates. A clever blocking
scheme might have an initial search on surname and date of birth, followed by search on date of birth and postal code, and finally a search on surname and postal code. Later stages consider only new candidates for links, not those confirmed as correct links in a prior stage. A good blocking strategy implements alternatives (surname AND DOB) OR (DOB and PostCode) OR (surname and PostCode) so that errors or variations in any one field do not cause linkage failures. The fact that each block consists of a conjunctive (AND) query means that an index can keep the computational burden of an indexed search within bounds.

Blocking has one major disadvantage. It takes multiple passes through a set of data to complete the screening process. When searching databases with many millions of rows in a single table, a single-pass solution makes better sense.

A better screening strategy defines a "synthetic key" for each block and creates an index for each. Each of the synthetic keys represents an alternative linkage key or fragments of an alternative key. Table 1 provides a picture of definitions of eight keys (columns) synthesized from eleven fragments or transforms of alternative keys. Whether character or numeric, key patterns reduce to strings of bits. By design each synthetic key has sufficient discriminatory power to bind only to similar key patterns, but relatively narrow bandwidth. For instance, it takes just seventeen bytes to represent a first initial of a first name, a soundex transform of a surname, and a Julian DOB. On anything larger than a low-end PC, a number of such indexes will fit into addressable memory. It then becomes technically feasible to
- transform and synthesize k alternative keys or fragments of keys from a moderately large (say, 100K rows) search dataset and build multiple indexes;
- load all of the indexes into memory and hold them there;
- scan a huge dataset one row at a time, transform and synthesize alternative keys for that row, and check each synthetic key against its corresponding index;
- select from the huge dataset only those rows linked to any one or more of the indexes.

The indexes implement a disjunctive “query flock” (Tsur, 1998) that screens for possible links during one pass through a huge dataset. Rows of data that fail to match any of the multiple key patterns pass through the screen. Those that match at least one of the patterns get set aside for further attention.

Table 1: Synthetic Linkage Keys

<table>
<thead>
<tr>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>k_5</th>
<th>k_6</th>
<th>k_7</th>
<th>k_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SSN5</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSN4</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLN</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOB*</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Glossary:
- k_i: synthetic search keys
- SSN5: digits 1-5 of SSN in decreasing order;
- SSN4: digits 6-9 of SSN in decreasing order;
- LN: last name;
- SLN: yield of Soundex(LN);
- FN: first name;
- FN1: first letter of first name;
- MI: middle initial (not used in screening);
- DOB: date of birth;
- DOB*: date of birth +/- (U/L) 32 days;
- MDX: day and month of birth;
- Sex: (not used in screening)

Multiple, Concurrent Key or Hash Indexes and Rescreening (BA)

Clearly a flock of indexes has to be compact to load into memory and easy and quick to search. The balanced B-Tree indexes used in RDBMS’s conform to the first constraint. In early attempts to implement screening on multiple indexes, we read data from files and used them to write SAS FORMATS. If the SAS expression PUT(key,ndxi.) yielded a “+”, the key value matched the ith index. This effective implementation in SAS of a B-Tree index, called “Big Formats” on SAS-L, worked surprisingly well. Nonetheless, subsequent postings by Paul Dorfman on SAS-L proved and demonstrated that hash indexes implemented in SAS worked much quicker. Testing of hash indexes against big formats, data step merges, and SQL query optimizations, by Ian Whitlock and others, established the equivalence or superiority of
Dorfman’s hash indexes, and the dramatic improvements they bring to linkage of very large volumes of data.

Though ideal choices in theory, hash indexes prove cryptic and difficult to specify. Almost all of the SAS programmers who had a penchant for refining Knuth’s sorting and searching algorithms have by now found jobs in Palo Alto or Seattle, and are writing C++ object classes and Java applets. Fortunately, Dorfman and a few others have remained loyal to the craft. To make it easier for the rest of us, Dorfman has written SAS macro-programs %hsize, %hload, and %hsearch:

```
%macro hsize (data=,hid=,load=.5);
%global z&hid;
data _null_;
p = ceil(nobs / &load);
do until (j = u + 1);
p ++ 1;
u = ceil(sqrt(p));
d =2 to u;
if mod(p,j) = 0 then leave;
end;
call symput("z&hid",compress(put(p,best.)));
put "info: size computed for hash table &hid is " p +(-1) '."
put;
stop;
set &data nobs=nobs;
runk;
%mend hsize;

%macro hload (data=,hid=,key=,pibl=6);
%global t&hid p&hid;
%local dsid nvars found varfound vname
%local keytyp keylen xpibl;
%let dsid  = %sysfunc(open(&data,i));
%let nvars = %sysfunc(attrn(&dsid,nvars));
%let varfound = 0;
%do varnum=1 %to &nvars;
 %let vname=%sysfunc(varname(&dsid,&varnum));
 %if %upcase(&vname) = %upcase(&key)
 %then %do;
 %let varfound = 1;
 %let vnum = &varnum;
 %end;
 %end;
%if &varfound = 0 %then %do;
   do;
   put "error: key=&key variable not found in dataset &data..";
   abort;
   end;
   %let rc = %sysfunc(close(&dsid));
   goto mexit;
%mend hload;

%macro hsearch (hid=, key=, match=);
%do;
   drop  ___h;
   &match = 0;
   %if &&t&hid = $ %then %do;
      ___h = mod(input(&key,pib&&p&hid...),&&z&hid) + 1;
   %end;
   %else %do;
      ___h = mod(&key,&&z&hid) + 1;
   %end;
   if l&hid(__h) > . then do;
      l&hid(__h) = 0;
      goto l&hid;
   %end;
   %if l&hid(__h) > . then do;
      if &key = h&hid(__h) then continue;
      if l&hid(__h) ne 0 then do;
         ___h = l&hid(__h);
         goto l&hid;
      end;
      &match = 1;
      gto s&hid;
   %end;
   end;
%mend hsearch;
```

The data= parameters require the name of a SAS dataset or view. The hid= parameters name the specific index being sized, loaded, and searched. The key= parameter identifies SAS variables that contain a value of the synthetic key either written to or matched to the index. The match= parameter names the Boolean result of an index search. These program excerpts show actual calls of %hsize, %hload, and %hsearch:

```
%hsize(data = mdx , hid = mdx , load = &lf );
data rslt.headid ….
```

exceeded. pibl=spibl assumed.;
%end;
%let p&hid = &spibl;
do;
 array h&hid (0:&&z&hid) &keytyp &keylen _temporary_;
 array l&hid (0:&&z&hid) 8 _temporary_;
 ___r = 0;
eof = 0;
do until (eof);
 set &data (keep=&key) end=eof;
%if &keytyp = $ %then %do;
 ___h = mod(input(&key,pib&&p&hid...),&&z&hid) + 1;
%end;
%else %do;
 ___h = mod(&key,&&z&hid) + 1;
%end;
 if l&hid(__h) > . then do;
 l&hid(__h) = 0;
 goto l&hid;
 %end;
 &match = 1;
 gto s&hid;
%end;
%mend hsearch;
```
do until (eof);
    infile header end=eof;
    input @ 01 rtype $char01.
    .
    .
    %hsearch(hid=mdx,key=mdx,match=m_mdx);
    .
    .

After screening, all of the rows of data selected from the huge dataset link to at least one of the rows of data in the search dataset, but some rows in the search dataset may not have linked to any of the rows in the huge dataset. A simple reversal of the screening process selects only those rows of data in the search dataset that match at least one row in the results of screening. We call this step "rescreening".

Where each row in the huge table has a very small chance of being a correct link, early elimination of unlikely candidates for linking greatly reduces the costs of later stages of the linkage process. Screening and rescreening cut large datasets down to manageable size.

**Fuzzy Scoring and Ranking on Degrees of Similarity of Linkage Keys (AI)**

Once screening has reduced a huge target dataset to, say, a mere million or so rows, and rescreening has reduced the number of rows in the search dataset by perhaps fifty to eighty percent, more intensive linkage methods become feasible. So-called probabilistic methods assign weights for individual field matches and mismatches for each pair of records, and sum the logs of these weights across fields. Estimated error rates in correct links, given a field match, and estimated coincidental links, given field frequencies, determine the composite weight or score. The higher the score for a pair of records, the higher the linkage program ranks them.

Probabilistic linkage and related methods have evolved over a span of some forty years into statistical modelling for control of both linkage failures and incorrect links. Winkler (2000) assesses the current state of record linkage methodology. Proceedings of a recent conference (Alvey and Jamerson, eds. 1997) on record linkage includes a historical perspective on development of specialized key linkage programs: OX-LINK (Oxford Medical Record Linkage System), GIRLS (Generalized Records Linkage System), from Statistics Canada; and, AUTOMATCH, originally developed by Matt Jaro at the US Bureau of the Census.

A relatively simple scoring program requires some guesswork about the values to assign to field match and mismatch weights and to a cut-off score. The values of weights generally increase with the relative importance of a field match to the chance of a correct match. Neutral weights for missing values help us focus on whatever subset of information a row of data contains.

In this implementation of a simple scoring program, a SAS macroprogram allows a user to assign variables names as parameters.

```sas
*** MATCH PROGRAM ***;
%macro mtch(DSN1= , DSN2= ,
 SubmitID= , SourceID= ,
 SSN1= , SSN2= ,
 LstName1= , LstName2= ,
 FstName1= , FstName2= ,
 MI1= , MI2= ,
 Sex1= , Sex2= ,
 Race1= , Race2= ,
 DOB1= , DOB2= ,
 DOD1= , DOD2= ,
 Zipcode1= , Zipcode2= ,
 Zipcode3= , Zipcode4= ,
 RECCODE1= , RECCODE2= ,
 STATE1= , STATE2= ,
 key1= , key2= ,
 keyval1= , keyval2= ,
 Rectype= , OutDSN= ,
 c=);
proc sql;
create table &OutDSN as
 select t1.&SubmitID as SubmitID,
 t2.&SourceID as SourceID,
 t1.&STATE1 as STATE,
 t1.&RACE1 as RACE,
 t2.&RECCODE2 as RECCODE,
 t1.&Zipcode1 as ZIP,
 t2.&Zipcode2 as ZIPX,
 t2.&Zipcode4 as ZIPP,
 case when t1.&SSN1=t2.&SSN2 and t1.&SSN1 ne
 "000000000" and
 (soundex(UPCASE(t1.&LstName1))=
 soundex(UPCASE(t2.&LstName2))
 or t1.&DOB1=T2.&DOB2) then 1.0
 when t1.&SSN1=t2.&SSN2 and t1.&SSN1 ne
 "000000000" then 0.5
 when
 index(UPCASE(t2.&FstName2),substr(UPCASE(t1.&
 FstName1),1,3)) and
 soundex(UPCASE(t1.&LstName1))=soundex(UPCASE(t2.&LstName2)) and t1.&DOB1=T2.&DOB2 then 0.2
 when
 UPCASE(t1.&FstName1)=UPCASE(t2.&FstName2) and
 t1.&Sex1="F1" and t1.&DOB1=T2.&DOB2 then 0.05
 else 0
 end as bonus,
 case when t1.&SSN1="000000000" or
 t2.&SSN2="000000000" then 0.4
 else max((1-
 (length(t1.&SSN1)*spedia(t1.&SSN1,t2.&SSN2)/200)),0.1)
 end as SSNCost,
```
case when
  UPCASE(t1.&LstName1)=
  UPCASE(t2.&LstName2) then 0.9
when soundex(UPCASE(t1.&LstName1))=
  soundex(UPCASE(t2.&LstName2)) then 0.6
when T1.&Sex1 = "F1" then 0.4
  else 0.1
end as SDXLN,

  case when
  UPCASE(t2.&FstName2)=UPCASE(t1.&FstName1) then 0.9
when index(UPCASE(t2.&FstName2),
  substr(UPCASE(t1.&FstName1),1,3)) then 0.6
when index(UPCASE(t2.&FstName2),
  substr(UPCASE(t1.&FstName1),1,1)) then 0.4
  else 0.2
end as FN2,

%if (&MI2 ne) %then
  case when substr(UPCASE(t1.&MI1),1,1)=
  substr(UPCASE(t2.&MI2),1,1)   then 0.8
  else 0.2
end as MI1,

%if (&Sex2 ne) %then
  case when T1.&Sex1=t2.&Sex2 then 0.5
      else 0.2
end as SexMtch,

  case when t2.&DOB2 = t1.&DOB1 then 0.7
      when month(t1.&DOB1)=month(t2.&DOB2)
      and day(t1.&DOB1)=day(t2.&DOB2) then 0.6
      when t2.&DOB2 <= 1.05*t1.&DOB1
      and t2.&DOB2 >= 0.95*t1.&DOB1 then 0.4
        else 0.2
end as BtwnDOB,

%if (&SourceID ne SSNC) %then
  t2.&SSN2 as SSNX, ;
t1.&SSN1 as SSNC,
t1.&LstName1,t2.&LstName2 as LNX,
t1.&FstName1,t2.&FstName2 as FNX,
t1.&Sex1,t1.&DOB1,t2.&DOB2 as DOBX,
t2.&DOB2,calculated bonus +
calculated SSNcost*
calculated SDXLN*
calculated FN2*
calculated BtwnDOB) as score
  from &DSN1 as t1,&DSN2 as t2
  where calculated score gt
    0.4*0.8*0.6*0.7 * &c
    and t1.&key1 = t2.&key2
    and t1.&keyval1 = t2.&keyval2
    order by calculated score DESCENDING,SubmitID,SourceID
;quit;
%mend mtch;

The structure of the SQL program makes it relatively easy to adapt to other purposes and to port to other SQL implementations.

Grouping Links and Decisions by Score Range (BA)

In some cases we expect more than one event row in a target dataset to link to one and the same person row in the search dataset; one event row in the target dataset linked to more than one person row in the search dataset indicates at least one error. In lower score ranges, the number of cross-linked events should increase sharply. Clerical reviewers can verify small samples (=300 links) of linked pairs drawn from different score ranges. Frequencies of reviewer decisions by scores make it possible to evaluate linkage performance within different ranges of scores.

Real database case study(5): During 2000 a particularly difficult linkage task required linkage of personal information on each member of a study cohort of around one-hundred forty-five thousand persons to a database of some twenty million exposure measurements containing names, demographic information, and a supposedly unique identifying number (US SSN) for each person. Some in the cohort should not link to any exposure measurements, and some should link to more than one. Researchers expected about ninety-seven thousand persons in the cohort to link to at least one exposure measurement. Roughly ninety thousand cohort records linked on the primary person key, SSN, to at least one exposure measurement.

Fuzzy linkage on a primary and on alternative keys linked the expected number of around ninety-seven thousand persons to at least one exposure measurement. About forty-five thousand of over two-hundred fifty thousand linked exposure measures required clerical reviews. A relatively large fraction of the ninety-seven thousand linked persons, 8.5%, linked to an exposure record on an alternative key, but not on the primary key. Many linked on alternative keys had small errors in the primary key but had full or partial matches on names and demographic data. These almost certainly qualified as correct links. Around 2% or so of cases of records linked on identical primary keys, then failed to match on any alternative key or fragment of a key. Researchers reclassified these cases as linkage errors and dropped them from the set of linked records.

Conclusions

Fuzzy key linkage has an important role in data quality improvement of RDBMS’s and other data repositories, and in linkage across databases. The computational burden of linkage of alternative keys means that such a task needs careful planning and good choices of resources. The SAS® System provides a rich variety of tools for conducting a linkage project and a basis for implementing new tools.
Acknowledgments

Paul Dorfman contributed many valuable ideas as well as programs and technical advice. Kellar Wilson and Lillie Stephenson tested variants of methods presented in the paper. Other Westat colleagues, especially Mike Rhoads and Ian Whitlock, and many contributors to SAS-L have for no fault of their own contributed to this effort.

References


Author Contact Information

Sigurd W. Hermansen
WESTAT, An Employee-Owned Research Corporation
1650 Research Blvd.
Rockville, MD 20850
USA
phone: 301.251.4268
e-mail: hermans1@westat.com