Graphing in SAS Software

Prepared by

International SAS® Training and Consulting
Destiny Corporation – 100 Great Meadow Rd Suite 601 - Wethersfield, CT 06109-2379
Phone: (860) 721-1684 - 1-800-7TRAINING
Fax: (860) 721-9784
Email: info@destinycorp.com
Web: www.destinycorp.com

Proc Gplot

Proc GPLOT is the standard Sas procedure that allows us to create graphs in plot form.

The GPLOT procedure allows you to plot one variable against another, each pair derived from the same observation in the input data set.

We can produce relatively simple plots using a few statements and then enhance the result.

With GPLOT we can do the following:

- Draw reference lines on the plot
- Overlay plots
- Use any symbol to represent the points
- Reverse the order on the vertical scale
- Plot character variables (<= length 16)
- Select colors, symbols, interpolation methods, line styles
- Produce ‘bubble’ charts
- Plot a second vertical axis
- Produce logarithmic plots

Simple Plots

Proc GPLOT uses the Share Price Data Set and produces a scatter plot for two variables.

The Plot statement first specifies the Y-axis.

A Gplot step may contain any number of Plot statements.

A Quit statement is required at the end of the program code because the procedure resides in memory.

Note: Confirm that the Create Listing option in the Results tab in the Preferences window is checked. This is critical for SAS to be able to store the output created (in list format) and create a graph from this output.

SAS creates the following list output and graph output:

Connecting the Dots

By default, the values on the graph are left unconnected. This is probably the most accurate depiction of the data, because once lines are drawn between data points, we begin making assumptions about the data.

The Symbol statement is used to specify the line drawn between the data points. Join and Spline are two methods used by the symbol statement to connect the dots.

An example of the Symbol statement with the Join option is displayed below:
Once specified, the symbol statement remains in effect until it is canceled by another specification or by specifying the following:

```
Goptions Reset=Global;
```

This is only one way of joining the points on a graph.

The symbol statement controls the type of line drawn, its color, width, line style and the symbol used to mark the data points. Now let's resubmit the code using the Spline option, which applies a smoothing effect to the points being connected.

Incorporating the rcli95 option in the Symbol Statement:

![Graph with rcli95 option](image)

Labeling the Axes

In the previous example, the range of vertical axis of the graph (representing bp) is mapped by default. It ranges from 310 to 380 in scale.

We can change the default settings for both axes by specifying the ranges for the axes, as displayed in the code below:

```
Goptions Reset=Global;
Goptions reset=all reset=global;
Goptions symbol=rcli95;
proc gpplot data=saved.shares;
plot bp*date;
run;
quit;
```

We can change the presentation of the graph, in this manner.

The symbol statement has been repeated here for clarity. It is not necessary, since it was submitted previously.
Adding Titles, Footnotes and Legends

There is no legend on the graph even though the legend was requested.

We will see how to display legends using a different form of the plot statement, in a subsequent section.

Legends can be constructed with footnote statements on simple plots.

Once specified, the Title, Footnote and Symbol statements remain in effect until canceled.

Overlaying

The overlay option is used to place multiple graphs on a page.

This is illustrated in the code below:
Global Statements

Symbol statements cycle round the list of colors if not color is specified

Symbol statements are Global.

The program below first resets the global statements to the default and then sets the Symbol, Title and Footnotes again.

This is clearly inefficient, and has been shown solely for illustration purposes.

```
Symbol statements are additive, in addition to being global in nature.

The result of Symbol1 displayed in the previous code is:

Symbol1 i=join;
Symbol1 c=red;

= Symbol1 i=join c=red;

The graph shows one symbol statement being used, a joined red line.

The other plots do not have symbol statements and a join is not displayed. They have begun to cycle round the list of colors for the device.

Cycling Colors

If the Symbol statement is not given a color, then it cycles round the list of colors for the device, generating a symbol statement each time.

Given a device with the following colors:

```
goptions colors=(black,red,green,blue,orange,brown);
```

Consider the effect of the following Symbol statements:

Symbol1 c=green i=join;

Results in the following symbol statements generated:

```
symbol c=green i=join; 1st statement generated;
symbol c=black i=join; 2nd generated;
symbol c=red i=join; 3rd generated, etc...;
symbol c=green i=join;
symbol c=blue i=join;
symbol c=orange i=join;
symbol c=brown i=join;
symbol c=blue i=join;
```

Pointing to a Symbol Statement

The Plot statement can point to a Symbol Statement. It points to the nth generated symbol statement, as displayed below:

```
symbol2 i=join;
Symbol3 c=blue i=join;
```

The values inform SAS how to assign the Symbol Statements.

Line Control

Proc Gplot controls lines using the Symbol Statement. The symbol statement can accept many options Symbols.

```
SYMBOL STATEMENT LINE = OPTIONS
SYMBOL STATEMENT VALUE = OPTIONS
SYMBOLS CODE (SYMBOLS)
```

Variations

Examples of Symbol Statements:
Now let's modify the code by changing the interpolation method for `symbol1` to `needle`.

Resubmit the code:

```plaintext
Next, we use the option designed to present information graphing confidence limits.
```
X*Y=Z and Axis Control

A normal plot statement of the form:

```
Plot A*C B*C / Overlay;
```

The above code displays two plots on one graph, but no legend showing which line corresponded to A, and which to B.

```
X*Y=Z
```

Using the X*Y=Z form of the Plot statement generates automatic Legends which display what each line represents.

```
Plot X*Y=Z;
```

To do this, the data must be in a certain structure.

Review the Flu data set:

```
Output in list form:
Output in HTML form:
```

We could Plot A*Date B*Date C*Date D*Date E*Date /Overlay; but this would not generate a legend.

We need to rearrange the data for the Y*X=Z form.

Rearranging Data
We can now Plot Cases*Date=Category;
For each Category, A, B, C, D, E a separate line will be drawn on the graph.

The output is displayed below.

The five Symbols statements generated will match with the five lines drawn, one for each value of category.

Always review the SAS log for notes and messages. They inform you about plots that lie outside the available range.

Notes:
Unless otherwise specified, SAS displays the frequency of the selected variable for display, by default.

Each bar or block represents a value of a variable, either character or numeric.

Bars can be grouped, sub-grouped and various patterns and colors can be used to enhance the presentation.

By default, Horizontal Bar Charts display graph statistics on the graph area next to the graph.

Pie charts can be of two types, Pie Charts and Star Charts.

Terminology

Physical Forms

The physical form of a chart is determined by the type specified in SAS code:

```
Proc Gchart Data=SAS_data_set;
 Vbar Variable / Options ;
```

The Vbar statement requests a vertical bar chart.

The variable after Vbar determines the number of bars the graph will contain.

Options on the statement control other aspects of the graph.

For example, the Demograf data set has a variable named gender, which has two values: F and M.

If we specify the following:

```
Proc Gchart Data=SAS_data_set;
 Vbar gender;
 quit;
```

The following chart is displayed.

![Vertical Bar Chart Example](image1)

By default, the vertical axis displays the frequency or the number of observations in the data set.

In this case, there are 21 females and 14 males.

Midpoints

For numeric variables, SAS/GRAPH will chart the midpoints of a data range.

Sometimes this produces unexpected results.

Let's consider the same vertical bar chart as before, but use a numeric variable such as Age that takes on values from 15 to 65.

```
Proc Gchart Data=SAS_data_set;
 Vbar age / discrete;
 quit;
```

As seen from the graph, it does not produce one bar for each value in the data.

The data range (2 to 65) is divided into ranges, and the midpoint of each range is charted:

<table>
<thead>
<tr>
<th>Range</th>
<th>Midpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-12</td>
<td>6</td>
</tr>
<tr>
<td>12-23</td>
<td>18</td>
</tr>
<tr>
<td>24-36</td>
<td>30</td>
</tr>
<tr>
<td>36-47</td>
<td>42</td>
</tr>
<tr>
<td>48-59</td>
<td>54</td>
</tr>
<tr>
<td>59-71</td>
<td>66</td>
</tr>
</tbody>
</table>

DISCRETE

The discrete option suppresses the calculation of these ranges and forces the procedure to produce one bar for each value in the data.

Submit the code below for illustration purposes.

```
Proc Gchart Data=SAS_data_set;
 Vbar age / discrete;
 quit;
```

The graph will be displayed, as follows:
The Discrete option is valid for all types of charts.

Valid Options for GCHART

Some options are common to the Vbar, Hbar, Block, Pie and Star Statements, while others are specific to the type of chart being drawn.

The table below lists options the types of chart(s) to which they can be applied.

<table>
<thead>
<tr>
<th>Option</th>
<th>Vbar</th>
<th>Hbar</th>
<th>Block</th>
<th>Pie</th>
<th>Star</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANNOTATE</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAXIS</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIOPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLINEGRAPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGROUPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGRIDGRAPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLEGGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMLLEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bar Charts

Vertical Bar Charts

The Vbar Statement produces Vertical Bar Charts, also known as Histograms.

Character Variables

The discrete option does not add value when used with a character variable since each value in the data is given a bar.
The Response Axis

The response axis is controlled with the SUMVAR (summing variable) option.

By default, the sumvar option displays the sum for the specified variable.

Statistics for SUMVAR

By default, the statistic displayed for Salary is SUM.

The response axis can display several different statistics, such as Mean, Sum (total), Freq, Cumulative Percent, Cumulative Frequency.

The option controlling statistics is TYPE.

Type and Sumvar work together to control which variable and statistic is displayed on the response axis.
Selecting Observations

The Where clause can be used to subset certain observations you wish to chart.

```plaintext
Command (6-0)
00001 # Selecting Observations Example:
00002
00003 goptions reset=global reset=all;
00004
00005 proc gchart data=saved.dayg2FC;
00006 hbar status / sumvar=salary type=mean
00007 midpoints='M' 'S' 'D' 'SEP';
00008 where children le 2;
00009 run;
00010 quit;
```

![Status bar chart](image1)

Sub-Dividing the Bars

The SUBGROUP option allows us to use another variable to divide the bars:

```plaintext
Command (6-0)
00001 # Sub-Dividing the Bars Example:
00002
00003 goptions reset=global reset=all;
00004
00005 proc gchart data=saved.dayg2FC;
00006 vbar status / sumvar=salary type=mean
00007 midpoints='M' 'S' 'D' 'SEP';
00008 subgroup gender;
00009 run;
00010 quit;
```

![Sub-divided bar chart](image2)

Grouping Bars

In addition to sub-dividing bars, they can also be grouped together using the GROUP option. This is displayed below.

```plaintext
Command (6-0)
00001 # Grouping Bars Example:
00002
00003 goptions reset=global reset=all;
00004
00005 proc gchart data=saved.dayg2FC;
00006 vbar status / sumvar=salary type=mean
00007 midpoints='M' 'S' 'D' 'SEP';
00008 subgroup gender;
00009 groupchildren;
00010 where children eq 2;
00011 run;
00012 quit;
```

![Grouped bar chart](image3)

Additional Options

Additional options are available that can control the appearance of the report.

The following example illustrates Frame, Gspace, Space, Ref, Patternid, Nozeros, Ascending, Sum and Raxis.

```plaintext
Command (6-0)
00001 # Other Options Example:
00002
00003 goptions reset=global reset=all;
00004
00005 proc gchart data=saved.dayg2FC;
00006 vbar status / sumvar=salary type=mean
00007 midpoints='M' 'S' 'D' 'SEP';
00008 subgroup gender;
00009 run;
00010 quit;
```

![Additional options chart](image4)

The above code has four pattern statements (lines 5-8) and the pattern id (line 13) changes patterns by sub-group.

Note that an automatic legend is produced when subgroup is specified.
The graph used four different patterns.

The space between the bars and the space occupied by the bars is set to two.

A reference line is drawn at 10,000, and the bars are drawn in ascending order.

No space is left for non-existent bars, and patterns change across the sub-groups.

The response axis is ordered with the Raxis option.

Block Charts

Block Charts are specified with the Block statement.

They use more space on the graphics area than a Vbar or Hbar and you may need to increase Hpos and Vpos. This is displayed on the next page.

Also called Manhattan Charts, this Grouped Block Chart displays the data across the two axes.

Note the values of Hpos and Vpos.

The original values of Hpos=80, Vpos=62 have been increased by 50% each.

The aspect ratio then remains the same.

Calculations: 80+40 = 120 62+31=93

Pie Charts

Pie Charts can be displayed using pies and stars.

Both types are capable of displaying data in a circular pie form.

Manhattan Charts

The GROUP option produces Manhattan Charts.

Note how the use of the discrete option changes the graph.
Pie and Star charts are specified in a fashion similar to Vbar, Hbar and Block Charts:

- Star Variable
- Pie Variable

Default Option: OTHER

The option OTHER specifies a value of 4%, by default.

If you do not change this value, then any slice of the pie, which contributes less than 4%, is grouped together with all the OTHER small values.

This will be illustrated in the following examples.

Pie Chart of County

Let’s create a Pie Chart displaying the counties of the UK.

When Pie charts are drawn for numeric variables, the Discrete option needs to be applied.

Since all the values in the data were under 4% of the total, they have been grouped together into the OTHER category.

Review the log.

The notes state that all the counties were included in the OTHER slice because none of them represented more than 2.6% of the total pie.

In such a situation, we incorporate the other option where we specify the value of the other slice.

Let’s set the value for Other at 0.1. This is demonstrated below.

The output is displayed below:

All the slices of the pie are displayed. The display is not clearly legible.

Let’s increase the hpos to 150 and vpos to 120 and re-submit the code.

This addresses the spacing issue and makes the graph legible.
Now let’s fill all the slices in the pie with solid colors.

Let’s add a pattern option, as follows:

We see that about half the total number of slices in the pie are solid. This is because the large number of slices requires more than one pattern specification.

Finally, we see that all the slices have been assigned solid colors.

Review the log and you will see messages stating that not all the slices in the pie were labeled.

This is addressed in the following section.

Labeling just the Midpoint

Let’s take the previously submitted code and add the slice, value and percent options.

Submit the code.
Regional Percentages

In the previous examples, by default the frequency was displayed on the charts.

When the SUMVAR option is absent, the frequency, or the number of observations in the data set, is charted.

Let’s label each slice of the pie, as displayed in the following code.

Contour Plots

Contour plots present output in three-dimensional forms.

There are two procedures used for plotting in three dimensions:

1. **GCONTOUR**

2. **G3D**

In GCONTOUR the response to two independent variables is displayed as different contour lines.

G3D is a 3-dimensional perspective representation, either as a ‘sheet’ of joined points or a scatter plot.

In this section, we will demonstrate how to produce the various shapes of a plot.

It is beyond the scope of this course to explain all the options and features available.

The next sections explain how to create basic shapes and enhance plots using features like patterns, axis and legend specifications and definitions of different plotting symbols.

The data set used for our examples is typical of monitoring drug dosages.

The two independent variables used are the dosage, which is recorded in milligrams and the frequency of dosage, which is shown in hours.

The response to the dosage and frequency is measured in terms of the patients’ pulse rate.

Here is a sample of the data:

Dose is measured in milligrams and regulary is measured in number of hours.

The goal here is to lower the patients’ pulse rate as much as possible based on the combination of dosage and regulary.

The first example shows the default contour plot produced with the Y*X=N form of plot statement.

The vertical axis is the Y, the horizontal is the X and the contour, or the response axis, is represented by values of the N.
The SAS System has chosen the line types, axis gradations and contour steps.

We can infer a pattern from the data that the patient response is getting better with increased dose and regularity.

We can also see that dosages greater than around 75 milligrams at 4-hour intervals (regularly) do not decrease the pulse rate - in fact, it increases again.

The goal is to find the point at which the pulse rate is minimized. This trend will be shown in many ways in the following graphs.

This example shows that for a given regularity of dosage, increasing dosage results in a decrease in pulse rate. After reaching a certain dosage level pulse rates start to rise again.

The most effective dosage seems to be 75 mg at four-hour intervals. Increasing the dosage to 110 mg has a less positive response.

LEVELS= Option

The first way we can enhance the plot is to specify the contour levels.

This is done by the LEVELS= option on the plot statement.

As usual, options on a plot statement follow a /.

The levels are going to start at 80 and increase in increments of 15 up to 140. The legend reflects this information.

Note that the start value (80) is below any value in the data, and a note in the LOG states the same.

Pattern Option

The pattern option displays the graph as 'bricks' of X and Y combinations. The contour passes through it to be patterned according to value.

The join option joins together areas of equal response.
3-D Plots

**PROC G3D** can depict three-dimensional graphs.

**PROC G3D** generates two types of plots - 'sheets' of joined points across a surface and scatter plots.

Note that if any interpolation is required between the joined points of the sheet, the data must first be processed using **PROC G3GRID**.

Using the same drug dosage data, we can display the relationship between the two independent variables (DOSE and REGULARY) and the dependent response variable (PULSE).

Using the code below, we get a three-dimensional presentation of the information where the exact points are joined together and graphed.

```plaintext
 Data Example 1;
 input dose regulary pulse;
 datalines;
 80.00 1 90.00 2 90.00 3 100 4 100 5 110 6 110 7;
 run;

 proc g3d data=example1 out=example1out;
 plot pulse*regulary*dose;
 run;
```

The example shows the very simple plot statement, again in the form `Y*X=N`.

Our first enhancement is to rotate the plot around the Z-axis using the rotate option and tilt it towards the observer by tilting around the Y-axis.

Side 'walls' will also be displayed for the sides of the plot.

The pyramid shapes are produced by default.

We can change the pyramid shape by using the shape option and specifying a variable in the input data set.

In the next example, we have specified a prism for values of PULSE of 100 and below.

Values above these values are assigned the balloon shape.
We can use the G3GRID to smooth the values in our input data set and produce an improved 3D.

See the user guide for the amazing algorithm!